login
A124931
Triangle read by rows: T(n,k) = (2*k-1)*binomial(n,k) (1 <= k <= n).
1
1, 2, 3, 3, 9, 5, 4, 18, 20, 7, 5, 30, 50, 35, 9, 6, 45, 100, 105, 54, 11, 7, 63, 175, 245, 189, 77, 13, 8, 84, 280, 490, 504, 308, 104, 15, 9, 108, 420, 882, 1134, 924, 468, 135, 17, 10, 135, 600, 1470, 2268, 2310, 1560, 675, 170, 19, 11, 165, 825, 2310, 4158, 5082, 4290, 2475, 935, 209, 21
OFFSET
1,2
COMMENTS
Sum of entries in row n = 1 + (n-1)*2^n = A000337(n).
EXAMPLE
First few rows of the triangle:
1;
2, 3;
3, 9, 5;
4, 18, 20, 7;
5, 30, 50, 35, 9;
6, 45, 100, 105, 54, 11;
...
MAPLE
T:=(n, k)->(2*k-1)*binomial(n, k): for n from 1 to 12 do seq(T(n, k), k=1..n) od; # yields sequence in triangular form
MATHEMATICA
Table[(2*k-1)*Binomial[n, k], {n, 12}, {k, n}]//Flatten (* G. C. Greubel, Nov 19 2019 *)
PROG
(PARI) for(n=1, 12, for(k=1, n, print1((2*k-1)*binomial(n, k), ", "))) \\ G. C. Greubel, Jun 08 2017
(Magma) [(2*k-1)*Binomial(n, k): k in [1..n], n in [1..12]]; // G. C. Greubel, Nov 19 2019
(Sage) [[(2*k-1)*binomial(n, k) for k in (1..n)] for n in (1..12)] # G. C. Greubel, Nov 19 2019
(GAP) Flat(List([1..12], n-> List([1..n], k-> (2*k-1)*Binomial(n, k) ))); # G. C. Greubel, Nov 19 2019
CROSSREFS
Cf. A000337.
Sequence in context: A059083 A207626 A232324 * A210226 A209163 A124932
KEYWORD
nonn,tabl
AUTHOR
Gary W. Adamson, Nov 12 2006
EXTENSIONS
Edited by N. J. A. Sloane, Nov 29 2006
STATUS
approved