login
a(n) = least integer k>=0 such that n=Floor[(4^j)/(3^k)] for some integer j>=0.
1

%I #2 Mar 30 2012 18:57:06

%S 0,3,4,0,1,16,2,17,3,13,18,4,9,14,24,0,10,15,20,25,1,6,11,16,45,21,26,

%T 2,7,36,12,41,17,46,22,27,3,32,8,37,119,13,42,18,47,23,52,187,28,4,33,

%U 168,9,38,120,14,43,125,19,48,183,24,53,0,29,217,5,87,34,63,10,39,333,15

%N a(n) = least integer k>=0 such that n=Floor[(4^j)/(3^k)] for some integer j>=0.

%C Every nonnegative integer occurs infinitely many times. The j-sequence is A124909.

%e 1=[4^0/3^0], 2=[4^3/3^3], 3=[4^4/3^4], 4=[4^1/3^0],...,

%e so j-sequence=(0,3,4,1,...); k-sequence=(0,3,4,0,...).

%Y Cf. A124908.

%K nonn

%O 1,2

%A _Clark Kimberling_, Nov 13 2006