login
a(n) = least integer j>=0 such that n=Floor[(3^j)/(5^k)] for some integer k>=0.
1

%I #2 Mar 30 2012 18:57:06

%S 0,8,1,13,3,9,15,21,2,8,11,14,17,20,23,4,7,10,32,13,57,16,19,41,22,44,

%T 3,47,6,50,9,31,53,12,56,15,37,59,18,40,62,21,84,43,65,24,46,5,27,90,

%U 49,8,30,93,52,11,74,33,55,118,14,36,99,58,121,17,39,102,61,124,20,146,42

%N a(n) = least integer j>=0 such that n=Floor[(3^j)/(5^k)] for some integer k>=0.

%C The k-sequence is A124914.

%e 1=[3^0/5^0], 2=[3^8/5^5], 3=[3^1/5^0], 4=[3^13/5^8],...,

%e so j-sequence=(0,8,1,13,...); k-sequence=(0,5,0,8,...).

%Y Cf. A124914.

%K nonn

%O 1,2

%A _Clark Kimberling_, Nov 12 2006