login
a(n) = least integer j>=0 such that n=floor((3^j)/(4^k)) for some integer k>=0.
1

%I #4 Apr 17 2022 20:25:11

%S 0,2,1,9,4,3,17,7,2,11,6,20,15,10,5,24,19,14,9,4,23,47,18,13,8,32,3,

%T 51,22,17,41,12,36,7,31,26,79,21,74,45,16,40,11,35,6,30,136,54,25,49,

%U 20,73,44,15,174,39,10,169,34,5,111,29,294,53,24,130,48,260,19,284,43,14,67

%N a(n) = least integer j>=0 such that n=floor((3^j)/(4^k)) for some integer k>=0.

%C The k-sequence is A124913.

%e 1=floor(3^0/4^0), 2=floor(3^2/4^1), 3=floor(3^1/4^0), 4=floor(3^9/4^6),...,

%e so j-sequence=(0,2,1,9,...); k-sequence=(0,1,0,6,...).

%Y Cf. A124913.

%K nonn

%O 1,2

%A _Clark Kimberling_, Nov 12 2006