login
A124901
Smallest order of any nonsolvable transitive Galois group for a polynomial of degree n.
4
60, 60, 168, 168, 504, 60, 660, 60, 5616, 168, 60, 336, 4080, 180, 60822550204416000, 60, 168, 1320, 10200960, 120, 300, 5616, 1512, 168, 4420880996869850977271808000000, 60
OFFSET
5,1
COMMENTS
These transitive groups are in MAGMA classification respectively:
a(5)=5T4, a(6)=6T12, a(7)=7T5, a(8)=8T37, a(9)=9T27,
a(10)=10T6, a(11)=11T5, a(12)=12T33, a(13)=13T7, a(14)=14T10,
a(15)=15T5, a(16)=16T713, a(17)=17T6, a(18)=18T90, a(19)=19T7,
a(20)=20T15, a(21)=21T14, a(22)=22T13, a(23)=23T4,
a(24)=24T201, a(25)=25T29, a(26)=26T39, a(27)=27T390,
a(28)=28T32, a(29)=28T7, a(30)=30T9.
EXAMPLE
a(8)=336 because nonsolvable Galois group PGL(2,7)=L(8) has order 336.
CROSSREFS
Sequence in context: A283531 A051713 A060225 * A298688 A247437 A266916
KEYWORD
nonn
AUTHOR
Artur Jasinski, Nov 12 2006
EXTENSIONS
a(4) corrected and a(11)-a(30) by Artur Jasinski, Feb 26 2011
STATUS
approved