login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A124869 Numerator of real part of (2*omega)^(-n) where omega = (-1 + i*3)/ 2. 4
1, -1, -2, 13, 7, -79, 11, 307, -527, -481, 779, -3827, -11753, 42641, 4031, -245453, 164833, 897599, -430441, -1044467, 9653287, -14084239, -8545549, 138785587, 32125393, -758178721, 149387939, 2595790093, -5583548873, -1811852719 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

Equivalently: numerator of real part of (omega)^(-n) where omega = -1 + i*3. - Harvey P. Dale, Sep 14 2013

LINKS

Table of n, a(n) for n=0..29.

FORMULA

a(n) = numerator( Re(1/(-1 + i*3)^n) ). 1/(-1 + i*3)^n = A124869(n)/ A124870(n) + i*A124871(n)/A124872(n).

G.f.:(10+x)/(10+2*x+x^2) = 1-1/10*x-2/25*x^2+13/500*x^3+7/2500*x^4-79/25000*x^5+... . - Vladeta Jovovic, Oct 08 2007

Conjectures from Colin Barker, Jul 16 2019: (Start)

G.f.: (1 - x - 2*x^2 + 13*x^3 - 7*x^4 - 65*x^5 + 39*x^6 + 125*x^7 - 625*x^10) / ((1 - 8*x^2 + 25*x^4)*(1 + 8*x^2 + 25*x^4)).

a(n) = 14*a(n-4) - 625*a(n-8) for n>10.

(End)

EXAMPLE

a(0) = 1 = numerator of Re((-1+3*i)^0) = 1/1 + 0*i.

a(1) = -1 = numerator of Re(1/(-1+3*i)) = -1/10 - i*3/10.

a(2) = -2 = numerator of Re((-1+3*i)^(-2)) = -2/25 + i*3/50.

a(3) = 13 = numerator of Re((-1+3*i)^(-3)) = 13/500 + i*9/500.

a(4) = 7 = numerator of Re((-1+3*i)^(-4)) = 7/2500 - i*6/625.

a(5) = -79 = numerator of Re((-1+3*i)^(-5)) = -79/25000 + i*3/25000.

a(6) = 11 = numerator of Re((-1+3*i)^(-6)) = 11/31250 + i*117/125000.

a(7) = 307 = numerator of Re((-1+3*i)^(-7)) = 307/1250000 - i*249/1250000.

a(8) = -527 = numerator of Re((-1+3*i)^(-8)) = -527/6250000 - i*21/390625.

MATHEMATICA

With[{o=-1+3I}, Table[Numerator[Re[o^-n]], {n, 0, 30}]] (* Harvey P. Dale, Sep 14 2013 *)

CROSSREFS

Sequence in context: A128155 A211366 A158088 * A292007 A213825 A244932

Adjacent sequences:  A124866 A124867 A124868 * A124870 A124871 A124872

KEYWORD

easy,frac,sign

AUTHOR

Jonathan Vos Post, Nov 11 2006

EXTENSIONS

Removed square roots from definition and formula. - R. J. Mathar, May 02 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 9 13:50 EST 2019. Contains 329877 sequences. (Running on oeis4.)