This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A124839 Inverse binomial transform of the Mobius sequence mu(n), A008683. 2
 1, -2, 2, -1, -2, 10, -30, 76, -173, 363, -717, 1363, -2551, 4797, -9189, 18015, -36008, 72725, -146930, 294423, -581758, 1130231, -2158552, 4061201, -7557522, 13983585, -25872679, 48115364, -90273986, 171186911 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Cf. binomial transform of the diagonalized form of this sequence. Contribution from Tilman Neumann, Dec 13 2008: (Start) This is also the inverse binomial transform of (0, {A002321(n), n=1,2,...}), where A002321(n) is Merten's function. More exactly: (0, {A124839(n), n=0,1,...}) = (0, invBin({A008683(n), n=1,2,...})) = invBin(0, {A002321(n), n=1,2,...}) (End) LINKS FORMULA Left border of finite difference rows of Mobius sequence. EXAMPLE Given (1, -1, -1, 0, -1...) taking finite differences, we obtain the array: 1, -1, -1, 0, -1, 1, -1... __ -2, 0 1, -1, 2, -2... _____ 2, 1, -2, 3, -4... _________-1, -3, 5, -7... ____________-2, 8, -12... ______________ 10, -20... __________________-30... Left border = A124839 CROSSREFS Cf. A124840. Sequence in context: A188792 A192395 A014243 * A294076 A117046 A268192 Adjacent sequences:  A124836 A124837 A124838 * A124840 A124841 A124842 KEYWORD sign AUTHOR Gary W. Adamson, Nov 10 2006 EXTENSIONS More terms & new formula relating Moebius and Merten's function via inverse binomial transforms. Tilman Neumann, Dec 13 2008 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 18 08:37 EDT 2019. Contains 322209 sequences. (Running on oeis4.)