%I #6 Feb 06 2020 20:54:29
%S 1,2,1,1,3,2,1,4,1,2,3,1,1,1,1,5,2,2,4,1,1,3,2,1,1,6,3,2,1,2,1,5,1,2,
%T 3,3,1,1,7,4,2,1,1,2,1,4,2,2,1,6,1,1,1,1,1,3,3,4,1,1,8,1,3,1,5,2,2,1,
%U 2,2,4,3,2,1,7,1,2,1,1,1,4,3,1,2,2,5,1,1,1,5,9,2,3,1,6,2,3,1,2,1,2,1,1,3,4
%N Table of exponents of prime factorizations in A055932.
%C This is an enumeration of all compositions. This sequence contains all finite sequences of positive integers.
%H Michael De Vlieger, <a href="/A124829/b124829.txt">Table of n, a(n) for n = 1..10382</a> (rows 1 <= n <= 2500).
%F A055932(n) = Product_k Prime(k)^T(n,k).
%e From _Michael De Vlieger_, Feb 06 2020: (Start)
%e Table begins:
%e n A055932(n+1) row n
%e ---------------------
%e 1 2 1;
%e 2 4 2;
%e 3 6 1, 1;
%e 4 8 3;
%e 5 12 2, 1;
%e 6 16 4;
%e 7 18 1, 2;
%e 8 24 3, 1;
%e 9 30 1, 1, 1;
%e 10 32 5;
%e 11 36 2, 2;
%e 12 48 4, 1;
%e 13 54 1, 3;
%e 14 60 2, 1, 1;
%e 15 64 6;
%e ... (End)
%t Map[FactorInteger[#][[All, -1]] &, Select[Range[10^3], Last[#] == Length[#] &@ PrimePi@ FactorInteger[#][[All, 1]] &]] // Flatten (* _Michael De Vlieger_, Feb 06 2020 *)
%Y Cf. A055932, A124830 (row lengths), A124831 (row sums), A124832, A066099.
%K nonn,tabf
%O 1,2
%A _Franklin T. Adams-Watters_, Nov 09 2006