The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A124810 Number of 4-ary Lyndon words of length n with exactly two 1s. 5
 3, 12, 54, 198, 729, 2538, 8748, 29484, 98415, 324648, 1062882, 3454002, 11160261, 35871174, 114791256, 365893848, 1162261467, 3680484804, 11622614670, 36611206686, 115063885233, 360882096930, 1129718145924, 3530368940292 (list; graph; refs; listen; history; text; internal format)
 OFFSET 3,1 COMMENTS If the offsets are modified, A124810 to A124813 are the 2nd to 5th Witt transform of A000244 [Moree]. - R. J. Mathar, Nov 08 2008 LINKS Pieter Moree, The formal series Witt transform, Discr. Math. no. 295 vol. 1-3 (2005) 143-160. [From R. J. Mathar, Nov 08 2008] FORMULA O.g.f.: 3 x^3 (1-2 x)/((1-3x)^2 (1-3x^2)) = 1/2*((x/(1-3*x))^2 - x^2/(1-3*x^2)) a(n) = 1/2*sum_{d|2,d|n} mu(d) C(n/d-1,(n-2)/d )*3^((n-2)/d) =1/2*(n-1)*3^(n-2) if n is odd =1/2*(n-1)*3^(n-2) - 1/2*3^((n-2)/2) if n is even. EXAMPLE a(4) = 12 because 1122, 1123, 1124, 1132, 1133, 1134, 1142, 1143, 1144, 1213, 1214, 1314 are all 4-ary Lyndon words with length 4 and have exactly two 1s. MAPLE a:= n-> (Matrix([[12, 3, 0, 0]]). Matrix(4, (i, j)-> if (i=j-1) then 1 elif j=1 then [6, -6, -18, 27][i] else 0 fi)^(n-4))[1, 1]: seq(a(n), n=3..26); # Alois P. Heinz, Aug 04 2008 MATHEMATICA a[n_] := (1/2)*(n-1)*3^(n-2) - If[OddQ[n], 0, (1/2)*3^((n-2)/2)]; Array[a, 24, 3] (* Jean-François Alcover, Sep 19 2017 *) CROSSREFS Cf. A124811, A124812, A124813, A124814, A004526, A124720. Sequence in context: A306525 A293131 A120983 * A329056 A191577 A282901 Adjacent sequences:  A124807 A124808 A124809 * A124811 A124812 A124813 KEYWORD nonn AUTHOR Mike Zabrocki, Nov 08 2006 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 2 08:16 EDT 2020. Contains 334767 sequences. (Running on oeis4.)