The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A124732 Triangle P*M, where P is the Pascal triangle written as an infinite lower triangular matrix and M is the infinite bidiagonal matrix with (1,2,1,2,...) in the main diagonal and (2,1,2,1,...) in the subdiagonal. 2
 1, 3, 2, 5, 5, 1, 7, 9, 5, 2, 9, 14, 14, 9, 1, 11, 20, 30, 25, 7, 2, 13, 27, 55, 55, 27, 13, 1, 15, 35, 91, 105, 77, 49, 9, 2, 17, 44, 140, 182, 182, 140, 44, 17, 1, 19, 54, 204, 294, 378, 336, 156, 81, 11, 2, 21, 65, 285, 450, 714, 714, 450, 285, 65, 21, 1, 23, 77, 385, 660 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Row sums = A052940: (1, 5, 11, 23, 47, 95, ...). LINKS FORMULA T(n,k) = binomial(n,k)*(3n-(-1)^k*(n-2*k))/(2n) (1 <= k <= n). EXAMPLE First 3 rows of the triangle are (1; 3,2; 5,5,1) since [1,0,0; 1,1,0; 1,2,1] * [1,0,0; 2,2,0; 0,1,1] = [1,0,0; 3,2,0; 5,5,1]. First few rows of the triangle are:    1;    3,   2;    5,   5,   1;    7,   9,   5,   2;    9,  14,  14,   9,   1;   11,  20,  30,  25,   7,   2;   13,  27,  55,  55,  27,  13,   1;   15,  35,  91, 105,  77,  49,   9,   2;   ... MAPLE T:=(n, k)->binomial(n, k)*(3*n-(-1)^k*(n-2*k))/2/n: for n from 1 to 12 do seq(T(n, k), k=1..n) od; # yields sequence in triangular form CROSSREFS Cf. A124730, A052940. Sequence in context: A329544 A095006 A159587 * A167552 A094787 A132778 Adjacent sequences:  A124729 A124730 A124731 * A124733 A124734 A124735 KEYWORD nonn,tabl AUTHOR Gary W. Adamson & Roger L. Bagula, Nov 05 2006 EXTENSIONS Edited by N. J. A. Sloane, Nov 24 2006 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 28 09:52 EST 2020. Contains 331319 sequences. (Running on oeis4.)