This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A124644 Mirror image of A098474 formatted as a triangular array. 8
 1, 1, 1, 2, 2, 1, 5, 6, 3, 1, 14, 20, 12, 4, 1, 42, 70, 50, 20, 5, 1, 132, 252, 210, 100, 30, 6, 1, 429, 924, 882, 490, 175, 42, 7, 1, 1430, 3432, 3696, 2352, 980, 280, 56, 8, 1, 4862, 12870, 15444, 11088, 5292, 1764, 420, 72, 9, 1, 16796, 48620, 64350, 51480, 27720 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 COMMENTS Equal to A091867*A007318. - Philippe Deléham, Dec 12 2009 Exponential Riordan array [exp(2x)*(Bessel_I(0,2x)-Bessel_I(1,2x)),x]. - Paul Barry, Mar 03 2011 From Tom Copeland, Nov 04 2014: (Start) O.g.f: G(x,t) = C[Pinv(x,t)] =  {1 - sqrt[1 - 4 *x /(1-x*t)]}/2 where C(x) = [1 - sqrt(1-4x)]/2, an o.g.f. for the shifted Catalan numbers A000108 with inverse Cinv(x) = x*(1-x), and Pinv(x,t)= -P(-x,t) = x/(1-t*x) with inverse P(x,t) = 1/(1+t*x). This puts this array in a family of arrays formed from the composition of C and P and their inverses. -G(-x,t) is the comp. inverse of the o.g.f. of A030528. This is an Appell sequence with lowering operator d/dt p(n,t) = n*p(n-1,t) and (p(.,t)+a)^n = p(n,t+a). The e.g.f. has the form e^(x*t)/w(t) where 1/w(t) is the e.g.f. of the first column, which is the Catalan sequence A000108. (End) LINKS Indranil Ghosh, Rows 0..125, flattened P. Barry, Continued fractions and transformations of integer sequences, JIS 12 (2009) 09.7.6 FORMULA T(n,k) = [x^(n-k)]F(-n,n-k+1;1;-1-x). - Paul Barry, Sep 05 2008 G.f.: 1/(1-xy-x/(1-x/(1-xy-x/(1-x/(1-xy-x/(1-x.... (continued fraction). - Paul Barry, Jan 06 2009 G.f.: 1/(1-x-xy-x^2/(1-2x-xy-x^2/(1-2x-xy-x^2/(1-.... (continued fraction). - Paul Barry, Jan 28 2009 T(n,k) = sum{i=0..n, C(n,i)*(-1)^(n-i)*sum{j=0..i, C(j,k)*C(i,j)*A000108(i-j)}}. - Paul Barry, Aug 03 2009 Sum_{k, 0<=k<=n} T(n,k)*x^k = A126930(n), A005043(n), A000108(n), A007317(n+1), A064613(n), A104455(n) for x = -2, -1, 0, 1, 2, 3 respectively. T(n,k)= A007318(n,k)*A000108(n-k). - Philippe Deléham, Dec 12 2009 E.g.f.: exp(2x+xy)*(Bessel_I(0,2x)-Bessel_I(1,2x)). - Paul Barry, Mar 10 2010 From Tom Copeland, Nov 08 2014: (Start) O.g.f.: G(x,t) = C[P(x,t)] = [1 - sqrt(1-4*x / (1-t*x))] / 2 = sum[n>=1, (C. +  t)^(n-1) * x^n] = x + (1 + t) x^2 + (2+ 2t + t^2) x^3 + ... umbrally, where (C.)^n = C_n = (1,1,2,5,8,...) = A000108(x), C(x)= x*A000108(x)= G(x,0), and P(x,t) = x/(1 + t*x), a special linear fractional (Mobius) transformation. P(x,-t)= -P(-x,t) is the inverse of P(x,t). Inverse o.g.f.: Ginv(x,t) = P[Cinv(x),-t] = x*(1-x) / [1 - t*x(1-x)] = -A030528(-x,t), where Cinv(x) = x*(1-x) is the inverse of C(x). G(x,t) = x*A091867(x,t+1), and Ginv(x,t) = x*A104597(x,-(t+1)). (End) T(n, k) = (-1)^(n-k)*Catalan(n-k)*Pochhammer(-n,n-k)/(n-k)!. - Peter Luschny, Feb 05 2015 EXAMPLE From Paul Barry, Jan 28 2009: (Start) Triangle begins 1, 1, 1, 2, 2, 1, 5, 6, 3, 1, 14, 20, 12, 4, 1, 42, 70, 50, 20, 5, 1 (End) MAPLE m:=n->binomial(2*n, n)/(n+1): T:=proc(n, k) if k<=n then binomial(n, k)*m(n-k) else 0 fi end: for n from 0 to 10 do seq(T(n, k), k=0..n) od; MATHEMATICA Table[Binomial[n, #] Binomial[2 #, #]/(# + 1) &[n - k], {n, 0, 10}, {k, 0, n}] // Flatten (* or *) Table[Abs[(-1)^k*CatalanNumber[#] Pochhammer[-n, #]/#!] &[n - k], {n, 0, 10}, {k, 0, n}] // Flatten (* Michael De Vlieger, Feb 17 2017 *) PROG (Sage) def A124644(n, k):     return (-1)^(n-k)*catalan_number(n-k)*rising_factorial(-n, n-k)/factorial(n-k) for n in range(7): [A124644(n, k) for k in (0..n)] # Peter Luschny, Feb 05 2015 CROSSREFS Cf. A098474, A000108, A091867, A030528, A104597. Sequence in context: A019710 A118806 A171670 * A259691 A056857 A175579 Adjacent sequences:  A124641 A124642 A124643 * A124645 A124646 A124647 KEYWORD nonn,tabl AUTHOR Farkas Janos Smile (smile_farkasjanos(AT)yahoo.com.au), Dec 21 2006 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 15 00:14 EDT 2019. Contains 328025 sequences. (Running on oeis4.)