The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Please make a donation to keep the OEIS running. We are now in our 56th year. In the past year we added 10000 new sequences and reached almost 9000 citations (which often say "discovered thanks to the OEIS"). Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A124610 a(n) = 5*a(n-1) + 2*a(n-2), n>1; a(0) = a(1) = 1. 4
 1, 1, 7, 37, 199, 1069, 5743, 30853, 165751, 890461, 4783807, 25699957, 138067399, 741736909, 3984819343, 21407570533, 115007491351, 617852597821, 3319277971807, 17832095054677, 95799031216999, 514659346194349 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS Top left element of powers of the matrix [1,2;3,4]. LINKS G. C. Greubel, Table of n, a(n) for n = 0..1000 Index entries for linear recurrences with constant coefficients, signature (5, 2). FORMULA a(n)/a(n-1) tends to (sqrt(33) + 5)/2 = 5.37228132... - Gary W. Adamson, Mar 03 2008 a(n) = -(sqrt(33)/22)*((5+sqrt(33))/2)^n + (1/2)*((5-sqrt(33))/2)^n + (sqrt(33)/22)*((5-sqrt(33))/2)^n + (1/2)*((5+sqrt(33))/2)^n, with n>=0. - Paolo P. Lava, Jul 07 2008 G.f.: (1 - 4*x)/(1 - 5*x - 2*x^2). - G. C. Greubel, Oct 23 2019 EXAMPLE a(5) = 1069 because [1,2;3,4]^5 = [1069,1558;2337,3406] MAPLE seq(coeff(series((1-4*x)/(1-5*x-2*x^2), x, n+1), x, n), n = 0..30); # G. C. Greubel, Oct 23 2019 MATHEMATICA Table[MatrixPower[{{1, 2}, {3, 4}}, n][[1]][[1]], {n, 0, 30}] Transpose[NestList[Flatten[{Rest[#], ListCorrelate[{2, 5}, #]}]&, {1, 1}, 40]][[1]]  (* Harvey P. Dale, Mar 23 2011 *) LinearRecurrence[{5, 2}, {1, 1}, 30] (* Harvey P. Dale, Jan 01 2014 *) PROG (PARI) Vec((1-4*x)/(1-5*x-2*x^2) +O('x^30)) \\ G. C. Greubel, Oct 23 2019 (MAGMA) R:=PowerSeriesRing(Integers(), 30); Coefficients(R!( (1-4*x)/(1-5*x-2*x^2) )); // G. C. Greubel, Oct 23 2019 (MAGMA) [n le 2 select 1 else 5*Self(n-1) + 2*Self(n-2):n in [1..22]]; // Marius A. Burtea, Oct 24 2019 (Sage) def A124610_list(prec):     P. = PowerSeriesRing(ZZ, prec)     return P( (1-4*x)/(1-5*x-2*x^2) ).list() A124610_list(30) # G. C. Greubel, Oct 23 2019 (GAP) a:=[1, 1];; for n in [3..30] do a[n]:=5*a[n-1]+2*a[n-2]; od; a; # G. C. Greubel, Oct 23 2019 CROSSREFS Cf. A100638. Sequence in context: A287808 A117130 A002807 * A002683 A319013 A126475 Adjacent sequences:  A124607 A124608 A124609 * A124611 A124612 A124613 KEYWORD easy,nonn AUTHOR Fredrik Johansson, Dec 20 2006 EXTENSIONS Recurrence from Gary W. Adamson, Mar 03 2008 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 30 05:31 EST 2020. Contains 338781 sequences. (Running on oeis4.)