login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A124575 Triangle read by rows: row n is the first row of the matrix M[n]^(n-1), where M[n] is the n X n tridiagonal matrix with main diagonal (2,4,4,...) and super- and subdiagonals (1,1,1,...). 29
1, 2, 1, 5, 6, 1, 16, 30, 10, 1, 62, 146, 71, 14, 1, 270, 717, 444, 128, 18, 1, 1257, 3582, 2621, 974, 201, 22, 1, 6096, 18206, 15040, 6718, 1800, 290, 26, 1, 30398, 93960, 85084, 43712, 14208, 2986, 395, 30, 1, 154756, 491322, 478008, 274140, 103530 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Column k=0 yields A033543 (2nd binomial transform of the sequence A000957(n+1)). Row sums yield A133158. [Corrected by Philippe Deléham, Oct 24 2007, Dec 05 2009]

Triangle T(n,k), 0<=k<=n, read by rows given by : T(0,0)=1, T(n,k)=0 if k<0 or if k>n, T(n,0)=2*T(n-1,0)+T(n-1,1), T(n,k)=T(n-1,k-1)+4*T(n-1,k)+T(n-1,k+1) for k>=1 . - Philippe Deléham, Mar 27 2007

This triangle belongs to the family of triangles defined by: T(0,0)=1, T(n,k)=0 if k<0 or if k>n, T(n,0)=x*T(n-1,0)+T(n-1,1), T(n,k)=T(n-1,k-1)+y*T(n-1,k)+T(n-1,k+1) for k>=1 . Other triangles arise by choosing different values for (x,y): (0,0) -> A053121; (0,1) -> A089942; (0,2) -> A126093; (0,3) -> A126970; (1,0)-> A061554; (1,1) -> A064189; (1,2) -> A039599; (1,3) -> A110877; ((1,4) -> A124576; (2,0) -> A126075; (2,1) -> A038622; (2,2) -> A039598; (2,3) -> A124733; (2,4) -> A124575; (3,0) -> A126953; (3,1) -> A126954; (3,2) -> A111418; (3,3) -> A091965; (3,4) -> A124574; (4,3) -> A126791; (4,4) -> A052179; (4,5) -> A126331; (5,5) -> A125906 . - Philippe Deléham, Sep 25 2007

LINKS

G. C. Greubel, Table of n, a(n) for the first 100 rows, flattened

FORMULA

T(n,k) = T(n-1,k-1) + 4*T(n-1,k) + T(n-1,k-1) for k>=2.

Sum_{k, 0<=k<=n}T(n,k)*(3*k+1)=6^n . - Philippe Deléham, Mar 27 2007

Sum_{k, k>=0} T(m,k)*T(n,k) = T(m+n,0)= A033543(m+n). - Philippe Deléham, Nov 22 2009

EXAMPLE

Row 2 is (5,6,1) because M[3]= [2,1,0;1,4,1;0,1,4] and M[3]^2=[5,6,1;6,18,8;1,8,17].

Triangle starts:

1;

2, 1;

5, 6, 1;

16, 30, 10, 1;

62, 146, 71, 14, 1;

270, 717, 444, 128, 18, 1;

MAPLE

with(linalg): m:=proc(i, j) if i=1 and j=1 then 2 elif i=j then 4 elif abs(i-j)=1 then 1 else 0 fi end: for n from 3 to 11 do A[n]:=matrix(n, n, m): B[n]:=multiply(seq(A[n], i=1..n-1)) od: 1; 2, 1; for n from 3 to 11 do seq(B[n][1, j], j=1..n) od; # yields sequence in triangular form

MATHEMATICA

M[n_] := SparseArray[{{1, 1} -> 2, Band[{2, 2}] -> 4, Band[{1, 2}] -> 1, Band[{2, 1}] -> 1}, {n, n}]; row[1] = {1}; row[n_] := MatrixPower[M[n], n-1] // First // Normal; Table[row[n], {n, 1, 10}] // Flatten (* Jean-François Alcover, Jan 09 2014 *)

CROSSREFS

Cf. A124576, A124574, A052179, A064613, A133158.

Sequence in context: A217204 A179455 A039810 * A178121 A302595 A113345

Adjacent sequences:  A124572 A124573 A124574 * A124576 A124577 A124578

KEYWORD

nonn,tabl

AUTHOR

Gary W. Adamson & Roger L. Bagula, Nov 05 2006

EXTENSIONS

Edited by N. J. A. Sloane, Dec 04 2006

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 19 22:28 EDT 2018. Contains 316378 sequences. (Running on oeis4.)