This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A124504 Number of partitions of an n-set without blocks of size 3. 3

%I

%S 1,1,2,4,11,32,113,422,1788,8015,39435,204910,1144377,6722107,

%T 41877722,273328660,1875326627,13427171644,100415636519,780856389454,

%U 6312398830812,52891894374481,459022366424253,4117482357137214,38140612800271305,364280428671552453,3584042687233836274

%N Number of partitions of an n-set without blocks of size 3.

%H Alois P. Heinz, <a href="/A124504/b124504.txt">Table of n, a(n) for n = 0..500</a>

%F E.g.f.: exp(exp(x)-1-x^3/6).

%F a(n) = A124503(n,0).

%e a(3)=4 because if the set is {1,2,3}, then we have 1|2|3, 1|23, 12|3 and 13|2.

%p G:=exp(exp(x)-1-x^3/6): Gser:=series(G,x=0,30): seq(n!*coeff(Gser,x,n),n=0..26);

%p # second Maple program:

%p with(combinat):

%p b:= proc(n, i) option remember; `if`(n=0, 1,

%p `if`(i<1, 0, add(multinomial(n, n-i*j, i\$j)

%p /j!*b(n-i*j, i-1), j=0..`if`(i=3, 0, n/i))))

%p end:

%p a:= n-> b(n\$2):

%p seq(a(n), n=0..30); # _Alois P. Heinz_, Mar 08 2015

%t a[n_] := SeriesCoefficient[Exp[Exp[x]-1-x^3/6], {x, 0, n}]*n!; Table[a[n], {n, 0, 30}] (* _Jean-François Alcover_, Apr 13 2015 *)

%o (PARI) x='x+O('x^66); Vec(serlaplace( exp(exp(x)-1-x^3/6) ) ) \\ _Joerg Arndt_, Jan 19 2015

%Y Cf. A124503, A328153.

%K nonn,changed

%O 0,3

%A _Emeric Deutsch_, Nov 14 2006

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 17 01:03 EDT 2019. Contains 328103 sequences. (Running on oeis4.)