login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A124452 Expansion of psi(-q) * psi(-q^2) * chi(q^3) * chi(q^6) in powers of q where psi(), chi() are Ramanujan theta functions. 0
1, -1, -1, 1, -1, 0, 1, 0, -1, 3, 0, -2, 1, 0, 0, 0, -1, -2, 3, -2, 0, 0, -2, 0, 1, -1, 0, 5, 0, 0, 0, 0, -1, 2, -2, 0, 3, 0, -2, 0, 0, -2, 0, -2, -2, 0, 0, 0, 1, -1, -1, 2, 0, 0, 5, 0, 0, 2, 0, -2, 0, 0, 0, 0, -1, 0, 2, -2, -2, 0, 0, 0, 3, -2, 0, 1, -2, 0, 0, 0, 0, 7, -2, -2, 0, 0, -2, 0, -2, -2, 0, 0, 0, 0, 0, 0, 1, -2, -1, 6, -1, 0, 2, 0, 0 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,10

COMMENTS

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

a(n) is nonzero if and only if n is in A002479.

LINKS

Table of n, a(n) for n=0..104.

M. Somos, Introduction to Ramanujan theta functions

Eric Weisstein's World of Mathematics, Ramanujan Theta Functions

FORMULA

Expansion of eta(q) * eta(q^6) * eta(q^8) * eta(q^12) / (eta(q^3) * eta(q^24)) in powers of q.

a(n) = -b(n) where b(n) is multiplicative with b(2^e) = 1, b(3^e) = 1 - 2*e, b(p^e) = 1+e if p == 1, 3 (mod 8), b(p^e) = (1 + (-1)^e) / 2 if p == 5, 7 (mod 8).

Euler transform of period 24 sequence [ -1, -1, 0, -1, -1, -1, -1, -2, 0, -1, -1, -2, -1, -1, 0, -2, -1, -1, -1, -1, 0, -1, -1, -2, ...].

Moebius transform is period 24 sequence [ -1, 0, 2, 0, 1, 0, 1, 0, 2, 0, -1, 0, 1, 0, -2, 0, -1, 0, -1, 0, -2, 0, 1, 0, ...].

a(8*n + 5) = a(8*n + 7) = 0. a(2*n) = a(n). a(3*n) >= 0.

EXAMPLE

1 - q - q^2 + q^3 - q^4 + q^6 - q^8 + 3*q^9 - 2*q^11 + q^12 - q^16 - 2*q^17 + ...

PROG

(PARI) {a(n) = local(A, p, e); if( n<1, n==0, A = factor(n); - prod( k=1, matsize(A)[1], if( p=A[k, 1], e=A[k, 2]; if( p==2, 1, if( p==3, 1 - 2*e, if( p%8<4, e+1, !(e%2)))))))}

(PARI) {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A) * eta(x^6 + A) * eta(x^8 + A) * eta(x^12 + A) / (eta(x^3 + A) * eta(x^24 + A)), n))}

CROSSREFS

Cf. A002479.

Sequence in context: A073538 A022898 A072780 * A004603 A174951 A275326

Adjacent sequences:  A124449 A124450 A124451 * A124453 A124454 A124455

KEYWORD

sign

AUTHOR

Michael Somos, Nov 02 2006

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 6 15:25 EST 2016. Contains 278781 sequences.