login
A124386
For all n >= 2, Sum_{2<=k<=n, gcd(k,n)>1} a(k) = n. a(1)=1.
1
1, 2, 3, 2, 5, -1, 7, 5, 7, -3, 11, -3, 13, 5, 7, 9, 17, -15, 19, 7, 11, 3, 23, -15, 9, 17, 33, -3, 29, -55, 31, 77, 47, -15, 45, -89, 37, 91, 79, -45, 41, -171, 43, 183, 189, 37, 47, -351, 155, 123, 373, 165, 53, -655, -471, 533, 553, 191, 59, -859, 61, 861, 233, 33, 839, -1073, 67, 687, 1761, -637, 71
OFFSET
1,2
EXAMPLE
The positive integers which are <= 12 and are not coprime to 12 are 2,3,4,6,8,9,10,12. And a(12) is such that a(2)+a(3)+a(4)+a(6)+a(8)+a(9)+a(10)+a(12) = 12.
MATHEMATICA
f[n_] := Select[Range[2, n], GCD[ #, n] > 1 &]; g[l_] := Block[{n = Length[l] + 1}, Append[l, n - Plus @@ l[[Most[f[n]]]]]]; Nest[g, {1}, 70] (* Ray Chandler, Nov 13 2006 *)
CROSSREFS
Cf. A124385.
Sequence in context: A157449 A053139 A127705 * A098668 A112763 A093476
KEYWORD
sign
AUTHOR
Leroy Quet, Oct 29 2006
EXTENSIONS
Extended by Ray Chandler, Nov 13 2006
STATUS
approved