

A124375


Numbers n such that Sum[ k!, {k,0,n} ]/2 = A003422(n+1)/2 is prime.


2



2, 3, 4, 7, 8, 9, 10, 29, 75, 162, 270, 272, 353, 720, 1795, 3732, 4768, 9315, 12220
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

Sum[ k!, {k,0,n} ] = n! + !n = !(n+1) = A003422(n+1), where !n is left factorial !n = Sum[ k!, {k,0,n1} ] = A003422(n) = {0, 1, 2, 4, 10, 34, 154, 874, 5914, 46234, 409114, 4037914, ...}. Left factorials are even for n>1. Corresponding primes of the form (k!+!k)/2 = (a(n)!+!a(n))/2 are listed in A124374(n) = A003422[a(n)+1]/2 = {2, 5, 17, 2957, 23117, 204557, 2018957, 4578979328975537786697650470157,...}.
A nearduplicate of A100614: a(n) = A100614(n)  1.  Ryan Propper, Feb 07 2008


LINKS

Table of n, a(n) for n=1..19.
Hisanori Mishima, Factorizations of many number sequences.
Eric Weisstein's World of Mathematics, Left Factorial.


MATHEMATICA

f=0; Do[f=f+n!; If[PrimeQ[f/2], Print[{n, f/2}]], {n, 0, 353}]


CROSSREFS

Cf. A003422, A124374.
Sequence in context: A152979 A070942 A073798 * A287664 A037080 A167055
Adjacent sequences: A124372 A124373 A124374 * A124376 A124377 A124378


KEYWORD

hard,more,nonn


AUTHOR

Alexander Adamchuk, Oct 28 2006


EXTENSIONS

More terms from Ryan Propper, Feb 07 2008


STATUS

approved



