login
This site is supported by donations to The OEIS Foundation.

 

Logo

Invitation: celebrating 50 years of OEIS, 250000 sequences, and Sloane's 75th, there will be a conference at DIMACS, Rutgers, Oct 9-10 2014.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A124186 Numbers n such that 1 + n + n^3 + n^5 + n^7 + n^9 + n^11 + ... + n^27 + n^29 + n^31 is prime. 2
1, 16, 25, 27, 93, 121, 187, 211, 267, 402, 420, 480, 601, 612, 631, 646, 667, 906, 916, 982, 1023, 1083, 1131, 1221, 1248, 1297, 1326, 1365, 1485, 1518, 1683, 1687, 1806, 1816, 1840, 1881, 1975, 1978, 2001, 2070, 2098, 2187, 2275, 2376, 2382, 2478, 2563, 2643, 2836, 3037, 3043 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

n can't be congruent to 2 mod 3, nor to 4 mod 5. - Robert Israel, Jun 24 2014

LINKS

Robert Israel, Table of n, a(n) for n = 1..10000

MAPLE

filter:= n -> isprime(1+add(n^(2*k+1), k=0..15));

select(filter, [$1..10000]); # Robert Israel, Jun 24 2014

MATHEMATICA

Select[Range[100], PrimeQ[1 + Sum[#^(2k + 1), {k, 0, 15}]] &] (* Alonso del Arte, Jun 24 2014 *)

Select[Range[4000], PrimeQ[Total[#^Range[1, 31, 2]] + 1] &] (* Vincenzo Librandi, Jun 28 2014 *)

PROG

(PARI) for(n=1, 10^4, if(ispseudoprime(sum(i=0, 15, n^(2*i+1))+1), print1(n, ", "))) \\ Derek Orr, Jun 24 2014

(MAGMA) [n: n in [0..5000] | IsPrime(s) where s is 1+&+[n^i: i in [1..31 by 2]]]; // Vincenzo Librandi, Jun 28 2014

(Sage)

i, n = var('i, n')

[n for n in (1..3100) if is_prime(1+(n^(2*i+1)).sum(i, 0, 15))] # Bruno Berselli, Jun 28 2014

CROSSREFS

Cf. A049407, similar sequences listed in A244376.

Sequence in context: A227651 A095409 A111026 * A176512 A001033 A100647

Adjacent sequences:  A124183 A124184 A124185 * A124187 A124188 A124189

KEYWORD

nonn,easy

AUTHOR

Artur Jasinski, Dec 13 2006

EXTENSIONS

a(46)-a(51) from Derek Orr, Jun 24 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified July 29 10:53 EDT 2014. Contains 245020 sequences.