login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A124186 Numbers n such that 1 + n + n^3 + n^5 + n^7 + n^9 + n^11 + ... + n^27 + n^29 + n^31 is prime. 2
1, 16, 25, 27, 93, 121, 187, 211, 267, 402, 420, 480, 601, 612, 631, 646, 667, 906, 916, 982, 1023, 1083, 1131, 1221, 1248, 1297, 1326, 1365, 1485, 1518, 1683, 1687, 1806, 1816, 1840, 1881, 1975, 1978, 2001, 2070, 2098, 2187, 2275, 2376, 2382, 2478, 2563, 2643, 2836, 3037, 3043 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

n can't be congruent to 2 mod 3, nor to 4 mod 5. - Robert Israel, Jun 24 2014

LINKS

Robert Israel, Table of n, a(n) for n = 1..10000

MAPLE

filter:= n -> isprime(1+add(n^(2*k+1), k=0..15));

select(filter, [$1..10000]); # Robert Israel, Jun 24 2014

MATHEMATICA

Select[Range[100], PrimeQ[1 + Sum[#^(2k + 1), {k, 0, 15}]] &] (* Alonso del Arte, Jun 24 2014 *)

Select[Range[4000], PrimeQ[Total[#^Range[1, 31, 2]] + 1] &] (* Vincenzo Librandi, Jun 28 2014 *)

PROG

(PARI) for(n=1, 10^4, if(ispseudoprime(sum(i=0, 15, n^(2*i+1))+1), print1(n, ", "))) \\ Derek Orr, Jun 24 2014

(MAGMA) [n: n in [0..5000] | IsPrime(s) where s is 1+&+[n^i: i in [1..31 by 2]]]; // Vincenzo Librandi, Jun 28 2014

(Sage)

i, n = var('i, n')

[n for n in (1..3100) if is_prime(1+(n^(2*i+1)).sum(i, 0, 15))] # Bruno Berselli, Jun 28 2014

CROSSREFS

Cf. A049407, similar sequences listed in A244376.

Sequence in context: A227651 A095409 A111026 * A274240 A176512 A001033

Adjacent sequences:  A124183 A124184 A124185 * A124187 A124188 A124189

KEYWORD

nonn,easy

AUTHOR

Artur Jasinski, Dec 13 2006

EXTENSIONS

a(46)-a(51) from Derek Orr, Jun 24 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 2 14:50 EST 2016. Contains 278678 sequences.