

A124103


C(2*n,n)*stirling2(2*n,n).


0



1, 2, 42, 1800, 119070, 10716300, 1223054448, 169298088960, 27564503362110, 5162247741608100, 1093309327729799180, 258387397153927593552, 67415162325326493328560, 19247023513381472754036000
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,2


LINKS

Table of n, a(n) for n=0..13.


FORMULA

a(n) ~ 2^(4*n1/2) * n^(n1) / (Pi * sqrt(1c) * exp(n) * (c*(2c))^n), where c = LambertW(2*exp(2)), see A226775 (= c).  Vaclav Kotesovec, May 11 2014


MAPLE

a:=n>binomial(2*n, n)*stirling2(2*n, n): seq(a(n), n=0..16);


MATHEMATICA

Table[Binomial[2*n, n]*StirlingS2[2*n, n], {n, 0, 20}] (* Vaclav Kotesovec, May 11 2014 *)


CROSSREFS

Cf. A000984, A007820, A226775.
Sequence in context: A259550 A177456 A216029 * A235776 A216336 A152286
Adjacent sequences: A124100 A124101 A124102 * A124104 A124105 A124106


KEYWORD

easy,nonn


AUTHOR

Zerinvary Lajos, Nov 26 2006


STATUS

approved



