

A124091


Decimal expansion of Fibonacci binary constant: Sum{i=0..inf} (1/2)^Fibonacci(i).


5



2, 4, 1, 0, 2, 7, 8, 7, 9, 7, 2, 0, 7, 8, 6, 5, 8, 9, 1, 7, 9, 4, 0, 4, 3, 0, 2, 4, 4, 7, 1, 0, 6, 3, 1, 4, 4, 4, 8, 3, 4, 2, 3, 9, 2, 4, 5, 9, 5, 2, 7, 8, 7, 7, 2, 5, 9, 3, 2, 9, 2, 4, 6, 7, 9, 3, 0, 0, 7, 3, 5, 1, 6, 8, 2, 6, 0, 2, 7, 9, 4, 5, 3, 5, 1, 6, 1, 2, 3, 3, 0, 1, 2, 1, 4, 5, 9, 0, 2, 3, 3, 2, 8, 5, 1
(list;
constant;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

This constant is transcendental, see A084119.  Charles R Greathouse IV, Nov 12 2014


LINKS

Harry J. Smith, Table of n, a(n) for n = 1..20000
D. H. Bailey, J. M. Borwein, R. E. Crandall and C. Pomerance, On the binary expansions of algebraic numbers, LBNL53854.


FORMULA

Sum_{i=0..infinity) 1/2^A000045(i).


EXAMPLE

2.4102787972078658917940430244710631444834239245952787725932...


MATHEMATICA

RealDigits[ N[ Sum[(1/2)^Fibonacci[i], {i, 0, Infinity}], 111]][[1]] (* Robert G. Wilson v, Nov 26 2006 *)


PROG

(PARI) a=0 ; for(n=0, 30, a += .5^fibonacci(n) ; print(a) ; )
(PARI) default(realprecision, 20080); x=suminf(k=0, 1/2^fibonacci(k)); for (n=1, 20000, d=floor(x); x=(xd)*10; write("b124091.txt", n, " ", d)) \\ Harry J. Smith, May 04 2009


CROSSREFS

Equals A084119 + 1. Cf. A007404 (KempnerMahler number); continued fraction, A125600.
Cf. A006518, A084119, A000301.
Sequence in context: A115407 A010586 A070678 * A067849 A164268 A152433
Adjacent sequences: A124088 A124089 A124090 * A124092 A124093 A124094


KEYWORD

cons,nonn


AUTHOR

R. J. Mathar, Nov 25 2006


EXTENSIONS

More terms from Robert G. Wilson v, Nov 26 2006
Fixed my PARI program, had n Harry J. Smith, May 19 2009


STATUS

approved



