login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A124038
Determinants of tridiagonal matrices in y with upper diagonal y-2: m(n,n,d)=If[ n == m && n > 1 && m > 1, y, If[n == m - 1 || n == m + 1, -1, If[n == m == 1, y - 2, 0]]] Det(m,n,m,d)=P(d,y).
2
1, -2, 1, -1, -2, 1, 2, -2, -2, 1, 1, 4, -3, -2, 1, -2, 3, 6, -4, -2, 1, -1, -6, 6, 8, -5, -2, 1, 2, -4, -12, 10, 10, -6, -2, 1, 1, 8, -10, -20, 15, 12, -7, -2, 1, -2, 5, 20, -20, -30, 21, 14, -8, -2, 1, -1, -10, 15, 40, -35, -42, 28, 16, -9, -2, 1
OFFSET
1,2
COMMENTS
Matrices modeled on: {{-2 + y, -1, 0}, {-1, y, -1}, {0, -1, y}} The upper y-1 gives the Steinbach polynomials A066170.
FORMULA
m(n,n,d)=If[ n == m && n > 1 && m > 1, y, If[n == m - 1 || n == m + 1, -1, If[n == m == 1, y - 2, 0]]]; Det(m,n,m,d)=P(d,y)
EXAMPLE
Triangular sequence:
{1},
{-2, 1},
{-1, -2, 1},
{2, -2, -2, 1},
{1, 4, -3, -2, 1},
{-2, 3, 6, -4, -2, 1},
{-1, -6, 6, 8, -5, -2, 1},
{2, -4, -12,10, 10, -6, -2, 1},
{1, 8, -10, -20, 15, 12, -7, -2, 1},
{-2, 5, 20, -20, -30, 21, 14, -8, -2, 1},
{-1, -10, 15, 40, -35, -42, 28, 16, -9, -2, 1}
MATHEMATICA
T[n_, m_, d_] := If[ n == m && n >1 && m > 1, y, If[n == m - 1 || n == m + 1, -1, If[n == m == 1, y - 2, 0]]] M[d_] := Table[T[n, m, d], {n, 1, d}, {m, 1, d}]; Table[M[d], {d, 1, 10}]; Table[Det[M[d]], {d, 1, 10}] a = Join[{{1}}, Table[CoefficientList[Table[Det[M[d]], {d, 1, 10}][[d]], y], {d, 1, 10}]]; Flatten[a]
PROG
(Sage)
@CachedFunction
def A124038(n, k):
if n< 0: return 0
if n==0: return 1 if k == 0 else 0
h = 2*A124038(n-1, k) if n==1 else 0
return A124038(n-1, k-1) - A124038(n-2, k) - h
for n in (0..9): [A124038(n, k) for k in (0..n)] # Peter Luschny, Nov 20 2012
CROSSREFS
Cf. A066170.
Sequence in context: A137672 A141272 A281527 * A029311 A217869 A116674
KEYWORD
uned,sign
AUTHOR
STATUS
approved