login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A123961 A triangular sequence from the omega2 Jacobian Elliptic Modular function. 0
0, -4, 0, -8, 1, 28, -12, 4, 52, 132, -16, 9, 84, 209, 384, -20, 16, 124, 304, 556, 880, -24, 25, 172, 417, 760, 1201, 1740, -28, 36, 228, 548, 996, 1572, 2276, 3108, -32, 49, 292, 697, 1264, 1993, 2884, 3937, 5152, -36, 64, 364, 864, 1564, 2464, 3564, 4864, 6364, 8064, -40, 81, 444, 1049, 1896, 2985, 4316, 5889 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Normally these functions are taken as implicit polynomials in two variables set equal to zero. Row sum: Table[Sum[t[n, m], {n, 0, m}], {m, 0, 10}] {0, -4, 21, 176, 670, 1860, 4291, 8736, 16236, 28140, 46145}

REFERENCES

Eric Weisstein's World of Mathematics, "Modular Equation." http://mathworld.wolfram.com/ModularEquation.html

LINKS

Table of n, a(n) for n=1..63.

FORMULA

t(n,m) =n^2*(1 + m)^2 - 4*m

EXAMPLE

Triangle begins:

{0},

{-4, 0},

{-8, 1, 28},

{-12, 4, 52, 132},

{-16, 9,84, 209, 384},

{-20, 16, 124, 304, 556, 880},

{-24, 25, 172, 417, 760, 1201, 1740},

{-28, 36, 228, 548, 996, 1572, 2276, 3108},

{-32, 49, 292, 697,1264, 1993, 2884, 3937, 5152},

{-36, 64, 364, 864, 1564, 2464, 3564, 4864, 6364, 8064},

{-40, 81, 444, 1049, 1896, 2985, 4316, 5889, 7704, 9761, 12060}

MATHEMATICA

t[n_, m_] = n^2*(1 + m)^2 - 4*m a = Table[Table[t[n, m], {n, 0, m}], {m, 0, 10}] Flatten[a]

CROSSREFS

Sequence in context: A288096 A021249 A010638 * A020763 A229911 A244336

Adjacent sequences:  A123958 A123959 A123960 * A123962 A123963 A123964

KEYWORD

uned,tabl,sign

AUTHOR

Roger L. Bagula, Oct 28 2006

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 21 11:54 EDT 2019. Contains 323443 sequences. (Running on oeis4.)