The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A123961 A triangular sequence from the omega2 Jacobian Elliptic Modular function. 0
 0, -4, 0, -8, 1, 28, -12, 4, 52, 132, -16, 9, 84, 209, 384, -20, 16, 124, 304, 556, 880, -24, 25, 172, 417, 760, 1201, 1740, -28, 36, 228, 548, 996, 1572, 2276, 3108, -32, 49, 292, 697, 1264, 1993, 2884, 3937, 5152, -36, 64, 364, 864, 1564, 2464, 3564, 4864, 6364, 8064, -40, 81, 444, 1049, 1896, 2985, 4316, 5889 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Normally these functions are taken as implicit polynomials in two variables set equal to zero. Row sum: Table[Sum[t[n, m], {n, 0, m}], {m, 0, 10}] {0, -4, 21, 176, 670, 1860, 4291, 8736, 16236, 28140, 46145} REFERENCES Eric Weisstein's World of Mathematics, "Modular Equation." http://mathworld.wolfram.com/ModularEquation.html LINKS FORMULA t(n,m) =n^2*(1 + m)^2 - 4*m EXAMPLE Triangle begins: {0}, {-4, 0}, {-8, 1, 28}, {-12, 4, 52, 132}, {-16, 9,84, 209, 384}, {-20, 16, 124, 304, 556, 880}, {-24, 25, 172, 417, 760, 1201, 1740}, {-28, 36, 228, 548, 996, 1572, 2276, 3108}, {-32, 49, 292, 697,1264, 1993, 2884, 3937, 5152}, {-36, 64, 364, 864, 1564, 2464, 3564, 4864, 6364, 8064}, {-40, 81, 444, 1049, 1896, 2985, 4316, 5889, 7704, 9761, 12060} MATHEMATICA t[n_, m_] = n^2*(1 + m)^2 - 4*m a = Table[Table[t[n, m], {n, 0, m}], {m, 0, 10}] Flatten[a] CROSSREFS Sequence in context: A288096 A021249 A010638 * A020763 A229911 A244336 Adjacent sequences:  A123958 A123959 A123960 * A123962 A123963 A123964 KEYWORD uned,tabl,sign AUTHOR Roger L. Bagula, Oct 28 2006 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 31 19:00 EDT 2020. Contains 338111 sequences. (Running on oeis4.)