login
A123924
Numbers k such that 2^(k+1) + 3^k is prime.
1
0, 1, 2, 3, 4, 5, 6, 9, 11, 12, 15, 17, 22, 32, 33, 35, 36, 46, 47, 59, 63, 80, 101, 154, 159, 173, 221, 225, 236, 250, 281, 347, 789, 992, 1607, 1631, 1983, 2072, 3616, 3702, 5076, 5957, 6335, 8771, 10203, 10984, 12203, 12350, 13660, 14891
OFFSET
1,3
COMMENTS
Also numbers k such that A123601(k) = A085279(k+1) = 2^(k+1) + 3^k. There are only 4 known primes of form the 2^k + 3^k, {2, 5, 13, 97} = A082101, corresponding to k = {0, 1, 2, 4}.
MATHEMATICA
Do[f=2^(n+1)+3^n; If[PrimeQ[f], Print[{n, f}]], {n, 0, 347}]
Select[Range[0, 6400], PrimeQ[2^(#+1)+3^#]&] (* Harvey P. Dale, Mar 04 2019 *)
PROG
(PARI) is(n)=ispseudoprime(2^(n+1)+3^n) \\ Charles R Greathouse IV, Jun 13 2017
CROSSREFS
Cf. A082101 (primes of form 2^k + 3^k), A085279, A123601 (smallest prime of the form p^n + q^n + r^n, where p,q,r are primes).
Sequence in context: A116546 A108957 A080112 * A360011 A252484 A036023
KEYWORD
nonn
AUTHOR
Alexander Adamchuk, Nov 20 2006
EXTENSIONS
More terms from Stefan Steinerberger, May 12 2007
a(44) from Jinyuan Wang, Aug 02 2021
a(45)-a(50) from Michael S. Branicky, Aug 05 2021
STATUS
approved