login
A123853
Numerators in an asymptotic expansion for the cubic recurrence sequence A123851.
6
1, 3, -15, 113, -5397, 84813, -3267755, 74391561, -15633072909, 465681118929, -31041303829713, 1145088996404679, -185348722911971841, 8165727090278785521, -778296382754673737187, 39898888480559205453945, -35033447016186321707305533
OFFSET
0,2
COMMENTS
A cubic analog of the asymptotic expansion A116603 of Somos's quadratic recurrence sequence A052129. Denominators are A123854.
REFERENCES
S. R. Finch, Mathematical Constants, Cambridge University Press, Cambridge, 2003, p. 446.
LINKS
T. M. Apostol, On the Lerch zeta function, Pacific J. Math. 1 (1951), 161-167. [In Eq. (3.7), p. 166, the index in the summation for the Apostol-Bernoulli numbers should start at s = 0, not at s = 1. - Petros Hadjicostas, Aug 09 2019]
Jonathan Sondow and Petros Hadjicostas, The generalized-Euler-constant function gamma(z) and a generalization of Somos's quadratic recurrence constant, arXiv:math/0610499 [math.CA], 2006.
Jonathan Sondow and Petros Hadjicostas, The generalized-Euler-constant function gamma(z) and a generalization of Somos's quadratic recurrence constant, J. Math. Anal. Appl. 332 (2007), 292-314.
Eric Weisstein's World of Mathematics, Somos's Quadratic Recurrence Constant.
Aimin Xu, Asymptotic expansion related to the Generalized Somos Recurrence constant, International Journal of Number Theory 15(10) (2019), 2043-2055. [The author gives recurrences and other formulas for the coefficients of the asymptotic expansion using the Apostol-Bernoulli numbers (see the reference above) and the Bell polynomials. - Petros Hadjicostas, Aug 09 2019]
EXAMPLE
A123851(n) ~ c^(3^n)*n^(-1/2)/(1 + 3/(4*n) - 15/(32*n^2) + 113/(128*n^3) - 5397/(2048*n^4) + ...) where c = 1.1563626843322... is the cubic recurrence constant A123852.
MAPLE
f:=proc(t, x) exp(sum(ln(1+m*x)/t^m, m=1..infinity)); end; for j from 0 to 29 do numer(coeff(series(f(3, x), x=0, 30), x, j)); od;
PROG
(PARI) {a(n) = local(A); if(n < 0, 0, A = 1 + O(x) ; for( k = 1, n, A = truncate(A) + x * O(x^k); A += x^k * polcoeff( 3/4 * (subst(1/A, x, x^2/(1-x^2))^2/(1-x^2) - 1/subst(A, x, x^2)^(2/3)), 2*k ) ); numerator( polcoeff( A, n ) ) ) } /* Michael Somos, Aug 23 2007 */
CROSSREFS
Cf. A052129, A112302, A116603, A123851, A123852, A123854 (denominators).
Sequence in context: A295758 A343707 A059849 * A357794 A335531 A166885
KEYWORD
frac,sign
AUTHOR
STATUS
approved