

A123852


Decimal expansion of cuberoot(1*cuberoot(2*cuberoot(3*...))).


5



1, 1, 5, 6, 3, 6, 2, 6, 8, 4, 3, 3, 2, 2, 6, 9, 7, 1, 6, 8, 5, 3, 3, 7, 0, 3, 2, 2, 8, 8, 7, 3, 6, 9, 3, 5, 6, 5, 1, 3, 0, 1, 4, 5, 4, 3, 8, 9, 1, 8, 8, 8, 6, 3, 7, 9, 9, 9, 2, 5, 9, 5, 9, 8, 9, 8, 3, 1, 7, 7, 8, 1, 6, 0, 7, 2, 8, 2, 6, 1, 9, 4, 6, 0, 7, 9, 0, 8, 1, 3, 3, 8, 2, 0, 3, 7, 8, 3, 1, 7
(list;
constant;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,3


COMMENTS

Cubic recurrence constant (see A123851): a cubic analog of Somos's quadratic recurrence constant A112302.


REFERENCES

S. R. Finch, Mathematical Constants, Cambridge University Press, Cambridge, 2003, p. 446.


LINKS

Table of n, a(n) for n=1..100.
J. Sondow and P. Hadjicostas, The generalizedEulerconstant function gamma(z) and a generalization of Somos's quadratic recurrence constant, J. Math. Anal. Appl. 332 (1) (2007) 292314
J. Sondow and P. Hadjicostas, The generalizedEulerconstant function gamma(z) and a generalization of Somos's quadratic recurrence constant, arXiv:math/0610499
Kh. Hessami Pilehrood, T. Hessami Pilehrood, Vaccatype series for values of the generalizedEulerconstant function and its derivative, arXiv:0808.0410 [math.NT]
Eric Weisstein's World of Mathematics, Somos's Quadratic Recurrence Constant


FORMULA

Product n^(1/3^n), n=1...infty.


EXAMPLE

1.15636268433226971685337032288736935651301454389188863799925959898317781607\
2826194607908133820378317...


MATHEMATICA

Take[RealDigits[Product[N[n^3^n, 200], {n, 400}]][[1]], 100].
RealDigits[Exp[D[PolyLog[n, 1/3], n]/.n>0], 10, 100][[1]] (* JeanFrançois Alcover, Jan 28 2014 *)


CROSSREFS

Cf. A052129, A112302, A116603, A123851, A123853, A123854.
Sequence in context: A060296 A114598 A199666 * A153614 A195709 A099038
Adjacent sequences: A123849 A123850 A123851 * A123853 A123854 A123855


KEYWORD

cons,easy,nonn


AUTHOR

Petros Hadjicostas and Jonathan Sondow, Oct 15 2006


EXTENSIONS

Updated References  R. J. Mathar, Aug 12 2010


STATUS

approved



