login
A123721
a(n) = A123249(n) - 2*n.
1
1, 0, 0, 1, 0, 1, 0, 0, 2, 1, 0, 0, 2, 1, 0, 1, 0, 0, 0, 3, 2, 1, 0, 1, 0, 0, 0, 3, 2, 1, 0, 0, 2, 1, 0, 1, 0, 1, 0, 0, 0, 0, 4, 3, 2, 1, 0, 0, 2, 1, 0, 1, 0, 1, 0, 0, 0, 0, 4, 3, 2, 1, 0, 1, 0, 0, 0, 3, 2, 1, 0, 0, 2, 1, 0, 0, 2, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 5, 4, 3, 2, 1, 0, 1, 0, 0, 0, 3, 2, 1, 0, 0, 2
OFFSET
1,9
COMMENTS
Conjecture: For k > 1, the smallest n such that a(n) = k is A123720(k) = 2^k + 2^(k-1) - k. Confirmed for k <= 22.
LINKS
B. M. Abrego, S. Fernandez-Merchant, B. Llano, An Inequality for Macaulay Functions, J. Int. Seq. 14 (2011) # 11.7.4
PROG
(PARI) {m=105; w=vector(3*m); print1(a=1, ", "); for(n=2, m, k=n; while(w[k], k++); a=n+k; print1(a-2*n, ", "); w[a]=1)}
CROSSREFS
Sequence in context: A112344 A294080 A294019 * A077618 A356859 A085863
KEYWORD
nonn
AUTHOR
Klaus Brockhaus, Oct 09 2006
STATUS
approved