OFFSET
1,1
COMMENTS
a(n) = -1 for n = {4, 16, 32, 64, 108, 256, 500, ...}.
All primes of the form 4*n^2 + 1 belong to a(n). They are listed in A121326(n).
Last digit of a(5k)>0 is 1.
Last digit of a(n)>0 is 7 if k is not congruent to 0 mod 5, except a(1) = 5.
All currently known a(n) for 6<n<100 are listed below:
a(7)-a(8) = {197, 257}. a(10) = 401.
a(12)-a(18) = {577, 677, 614657, 185302018885184100000000000000000000000000000001, -1, 1336337, 1297}.
a(20) = 1601. a(22)-a(24) = {197352587024076973231046657, 4477457, 5308417}.
a(27)-a(28) = {2917, 3137}. a(32)-a(33) = {-1, 4357}.
a(37)-a(38) = {5477, 1238846438084943599707227160577}. a(40)-a(42) = {40960001, 45212177, 7057}.
a(44)-a(45) = {59969537, 8101}. a(47)-a(48) = {8837, 2708192040014184559945134363758220403329915059847434832829218817}.
a(51) = 355149324327687480512960334807820417442703411649746143408158197478603636302066719166373229531510062746472251495292613758147362817.
a(53) = 126247697.
a(55)-a(60) = {12101, 375817263084708503965641077546115954135779496817219617550715846657, 662148260948741787228316709317924977225312314678010411233675575297, 13457, 193877777, 14401}.
a(62)-a(67) = {153777, 15877, -1, 16901, 303595777, 17957}.
a(70)-a(71) = {384160001, 406586897}. a(73) = 21317.
a(75)-a(82) = {22501, 284936905588473857, 562448657, 24337, 150838912030874130174020868290707457, 25601, 2564253345083631031816684000763319514758972657894465952263290175258003723567069899841752707150583949000981132009709206360818037538528413351937, 723394817}.
a(85) = 28901. a(87)-a(88) = {916636177, 30977}. a(90) = 32401.
a(92) = 33857.
a(94)-a(95) = {2435149272410363768730097404205858817, 4791383378576850493153910080681360672521575296790233332710625780023370220270083429409686634957161195934369337557766908660231890537157173340981965932463779247224064100000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001}.
a(97) = 1416468497. a(99) = 1536953617.
a(n) is currently unknown for n = {6, 9, 11, 19, 21, 25, 26, 29, 30, 31, 34, 35, 36, 39, 43, 46, 49, 50, 52, 54, 61, 68, 69, 72, 74, 83, 84, 86, 89, 91, 93, 96, 98, 100, ...}.
LINKS
Jeppe Stig Nielsen, Generalized Fermat Primes sorted by base.
Eric Weisstein's World of Mathematics, Generalized Fermat Number.
CROSSREFS
KEYWORD
hard,more,sign
AUTHOR
Alexander Adamchuk, Nov 15 2006
STATUS
approved