login
A123658
a(n) = 1 + n^4 + n^6 + n^9 + n^10.
1
5, 1617, 79543, 1315073, 11735001, 70591825, 322948907, 1208225793, 3874742893, 11001010001, 28297158495, 67080151297, 148467846593, 309923269713, 615105191251, 1168247947265, 2134605998037, 3768860634193, 6453801131783, 10752064160001, 17474246985385
OFFSET
1,1
LINKS
Index entries for linear recurrences with constant coefficients, signature (11,-55,165,-330,462,-462,330,-165,55,-11,1).
FORMULA
a(n) = 1 + n^4 + n^6 + n^9 + n^10.
G.f.: x*(x^10 -8*x^9 +615*x^8 +33654*x^7 +381288*x^6 +1242534*x^5 +1378908*x^4 +528210*x^3 +62031*x^2 +1562*x +5)/(1-x)^11. - Colin Barker, May 27 2012
EXAMPLE
a(40) = 1+40^(A001358(1))+40^(A001358(2))+40^(A001358(3))+40^(A001358(4)) = 1+40^4+40^6+40^9+40^10 = 10747908098560001.
MATHEMATICA
Table[1+n^4+n^6+n^9+n^10, {n, 1, 50}] (* G. C. Greubel, Oct 17 2017 *)
PROG
(PARI) a(n)=1+n^4+n^6+n^9+n^10 \\ Charles R Greathouse IV, Oct 07 2015
(Magma) [1+n^4+n^6+n^9+n^10: n in [0..50]]; // G. C. Greubel, Oct 17 2017
KEYWORD
easy,nonn
AUTHOR
Jonathan Vos Post, Oct 04 2006
STATUS
approved