

A123594


Unique sequence of 0's and 1's which are either repeated or not repeated with the following property: when the sequence is 'coded' in writing down a 1 when an element is repeated and a 0 when it is not repeated and by putting the initial element in front of the sequence thus obtained, the above sequence appears.


2



1, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


LINKS

Vantieghem Emmanuel, Nov 14 2006, Table of n, a(n) for n = 1..620


FORMULA

a(n+2) = A000002(n)1.  Danny Rorabaugh, Mar 04 2015


MATHEMATICA

a = {1, 1, 0}; i = 2; Label[be]; i += 1; t = Part[a, i]; If[t == 0, b = {a, 1  Part[a, Length[a]]}; a := Flatten[b], b = {a, Part[a, Length[a]]}; a := Flatten[b]; b = {a, 1  Part[a, Length[a]]}; a := Flatten[b]]; If[i > 1000, Print[a], Goto[be]]


CROSSREFS

Cf. A000002.
Sequence in context: A167753 A141727 A298952 * A286801 A189091 A145006
Adjacent sequences: A123591 A123592 A123593 * A123595 A123596 A123597


KEYWORD

easy,nonn


AUTHOR

Emmanuel Vantieghem, Nov 14 2006


STATUS

approved



