%I #10 Dec 10 2024 15:46:32
%S 13,29,79,41,41,313,421,257,541,461,1013,673,2341,197,661,2113,1361,
%T 1009,4447,15161,2857,7789,7499,2113,5101,8269,811,9689,1567,1381,
%U 2543,31489,3631,23189,9941,10513,16651,21661,84163,5281,13613,1933,22447,23497,2971
%N Smallest prime p such that p divides m^(m+1)+1, where m = (p-2n-1)/(2n).
%C Corresponding m = {5,6,12,4,3,25,29,15,29,22,45,27,89,6,21,...}.
%e a(1) = 13 because for m = (13-3)/2 = 5 prime 13 divides m^(m+1)+1 = 5^6+1 = 15626, but m^(m+1)+1 is not divisible by any prime p of the form p=2m+3 for m<5.
%t s={};Do[i=1;Until[p=Prime[i];m=(p-2n-1)/(2n);Divisible[m^(m+1)+1,p],i++];AppendTo[s,p],{n,45}];s (* _James C. McMahon_, Nov 23 2024 *)
%Y Cf. A177714.
%K nonn
%O 1,1
%A _Alexander Adamchuk_, Nov 12 2006
%E More terms from _R. J. Mathar_, Jan 17 2008
%E a(44)-a(45) from _James C. McMahon_, Nov 23 2024