OFFSET
1,3
FORMULA
a(n) = ceiling(sqrt(e - Sum_{i=1..n-1} 1/a(i)^2))
EXAMPLE
a(4) = 2 because the first three terms of the sequence are 1,1,2 and 2 is the smallest integer k such that 1/1^2 + 1/1^2 + 1/2^2 + 1/k^2 < e.
PROG
(PARI) \p150 \\ This is enough to print the first 17 terms correctly
my(l(x)=ceil(sqrt(1/x)), k=exp(1)); for(T=1, 17, print(l(k)); k=k-1/l(k)^2)
CROSSREFS
KEYWORD
nonn
AUTHOR
Hauke Worpel (hw1(AT)email.com), Nov 11 2006
STATUS
approved