login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A123548 Triangle read by rows: T(n,k) = number of unlabeled bicolored graphs having 2n nodes and k edges, which are invariant when the two color classes are interchanged. Here n >= 0, 0 <= k <= n^2. 2
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 3, 2, 1, 1, 1, 1, 1, 1, 2, 4, 5, 7, 8, 9, 8, 7, 5, 4, 2, 1, 1, 1, 1, 1, 1, 2, 4, 6, 9, 14, 22, 29, 33, 37, 43, 43, 37, 33, 29, 22, 14, 9, 6, 4, 2, 1, 1, 1, 1, 1, 1, 2, 4, 6, 10, 16, 29, 46, 69, 99, 141, 183, 230, 277, 319, 342, 352, 342, 319, 277, 230, 183, 141, 99, 69, 46, 29, 16, 10, 6, 4, 2, 1, 1, 1 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,12

REFERENCES

R. W. Robinson, Numerical implementation of graph counting algorithms, AGRC Grant, Math. Dept., Univ. Newcastle, Australia, 1978.

LINKS

Andrew Howroyd, Rows n=0..20, flattened (rows 0..7 from R. W. Robinson)

EXAMPLE

Triangle begins:

n = 0

k = 0 : 1

************************ total ( 2n = 0) = 1

n = 1

k = 0 : 1

k = 1 : 1

************************ total ( 2n = 2) = 2

n = 2

k = 0 : 1

k = 1 : 1

k = 2 : 1

k = 3 : 1

k = 4 : 1

************************ total ( 2n = 4) = 5

n = 3

k = 0 : 1

k = 1 : 1

k = 2 : 1

k = 3 : 2

k = 4 : 3

k = 5 : 3

k = 6 : 2

k = 7 : 1

k = 8 : 1

k = 9 : 1

************************ total ( 2n = 6) = 16

PROG

(PARI)

permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}

edges(v, t) = {prod(i=2, #v, prod(j=1, i-1, my(g=gcd(v[i], v[j])); t(2*v[i]*v[j]/g)^g )) * prod(i=1, #v, my(c=v[i]); t(2*c)^(c\2)*if(c%2, t(c), 1))}

Row(n) = {my(s=0); forpart(p=n, s+=permcount(p)*edges(p, i->1+x^i)); Vecrev(s/n!)}

{ for(n=0, 6, print(Row(n))) } \\ Andrew Howroyd, Mar 08 2020

CROSSREFS

Row sums give A122082.

Cf. A008406.

Sequence in context: A074989 A307429 A261283 * A131838 A274885 A287732

Adjacent sequences: A123545 A123546 A123547 * A123549 A123550 A123551

KEYWORD

nonn,tabf

AUTHOR

N. J. A. Sloane, Nov 14 2006

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 4 10:32 EST 2022. Contains 358556 sequences. (Running on oeis4.)