login
Triangle read by rows: T(n,k) = number of unlabeled connected graphs on n nodes with degree >= 3 at each node (n >= 1, 0 <= k <= n(n-1)/2).
9

%I #7 Nov 22 2020 20:22:36

%S 0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,1,1,0,0,0,0,0,0,0,0,0,

%T 2,4,5,4,2,1,1,0,0,0,0,0,0,0,0,0,0,0,4,18,30,34,29,17,9,5,2,1,1,0,0,0,

%U 0,0,0,0,0,0,0,0,0,5,35,136,309,465,505,438,310,188,103,52,23

%N Triangle read by rows: T(n,k) = number of unlabeled connected graphs on n nodes with degree >= 3 at each node (n >= 1, 0 <= k <= n(n-1)/2).

%D R. W. Robinson, Numerical implementation of graph counting algorithms, AGRC Grant, Math. Dept., Univ. Newcastle, Australia, 1978.

%H R. W. Robinson, <a href="/A123545/b123545.txt">Rows 1 through 14, flattened</a>

%e Triangle begins:

%e n = 1

%e k = 0 : 0

%e ************************ TOTAL (n = 1) = 0

%e n = 2

%e k = 0 : 0

%e k = 1 : 0

%e ************************ TOTAL (n = 2) = 0

%e n = 3

%e k = 0 : 0

%e k = 1 : 0

%e k = 2 : 0

%e k = 3 : 0

%e ************************ TOTAL (n = 3) = 0

%e n = 4

%e k = 0 : 0

%e k = 1 : 0

%e k = 2 : 0

%e k = 3 : 0

%e k = 4 : 0

%e k = 5 : 0

%e k = 6 : 1

%e ************************ TOTAL (n = 4) = 1

%e n = 5

%e k = 0 : 0

%e k = 1 : 0

%e k = 2 : 0

%e k = 3 : 0

%e k = 4 : 0

%e k = 5 : 0

%e k = 6 : 0

%e k = 7 : 0

%e k = 8 : 1

%e k = 9 : 1

%e k = 10 : 1

%e ************************ TOTAL (n = 5) = 3

%e From _Hugo Pfoertner_, Nov 22 2020: (Start)

%e Transposed table:

%e Nodes Sums

%e 4 5 6 7 8 9 10 11 12 13 |A338604

%e Edges-----------------------------------------------------|-------

%e 6 | 1 . . . . . . . . . | 1

%e 7 | . . . . . . . . . . | 0

%e 8 | . 1 . . . . . . . . | 1

%e 9 | . 1 2 . . . . . . . | 3

%e 10 | . 1 4 . . . . . . . | 5

%e 11 | . . 5 4 . . . . . . | 9

%e 12 | . . 4 18 5 . . . . . | 27

%e 13 | . . 2 30 35 . . . . . | 67

%e 14 | . . 1 34 136 27 . . . . | 198

%e 15 | . . 1 29 309 288 19 . . . | 646

%e 16 | . . . 17 465 1377 357 . . . | 2216

%e 17 | . . . 9 505 3978 3478 208 . . | 8178

%e 18 | . . . 5 438 7956 18653 4958 85 . | 32085

%e 19 | . . . 2 310 11904 65011 50575 4291 . | 132093

%e 20 | . . . 1 188 14134 163812 302854 85421 1958 | 568368

%e (End)

%Y Row sums give A007112. Cf. A123546, A338604.

%K nonn,tabf

%O 1,35

%A _N. J. A. Sloane_, Nov 13 2006