login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A123475 Product of the primitive roots of prime(n). 6
1, 2, 6, 15, 672, 924, 11642400, 163800, 109681110000, 5590307923200, 970377408, 134088514560000, 138960660963091968000, 874927557504000, 3456156426256013065185600000000, 30688148115024695887527936000000 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Except for n=2, we have a(n)=1 (mod prime(n)).

REFERENCES

C. F. Gauss, Disquisitiones Arithmeticae, Yale, 1965; see p. 52.

LINKS

Charles R Greathouse IV, Table of n, a(n) for n = 1..145

EXAMPLE

a(5)=672 because the primitive roots of 11 are {2,6,7,8}.

MATHEMATICA

PrimRoots[p_] := Select[Range[p-1], MultiplicativeOrder[ #, p]==p-1&]; Table[Times@@PrimRoots[Prime[n]], {n, 20}]

PROG

(PARI) vecprod(v)=prod(i=1, #v, v[i])

a(n, p=prime(n))=vecprod(select(n->znorder(Mod(n, p))==p-1, [2..p-1]))

apply(p->a(0, p), primes(20)) \\ Charles R Greathouse IV, May 15 2015

(Perl) use ntheory ":all"; sub list { my $n=shift; grep { znorder($_, $n) == $n-1 } 2..$n-1; } say vecprod(list($_)) for @{primes(nth_prime(20))}; # Dana Jacobsen, May 15 2015

CROSSREFS

Cf. A060749 (primitive roots of prime(n)), A088144 (sum of primitive roots of prime(n)).

Sequence in context: A261726 A302775 A181993 * A193341 A009711 A009586

Adjacent sequences: A123472 A123473 A123474 * A123476 A123477 A123478

KEYWORD

nonn

AUTHOR

T. D. Noe, Sep 27 2006

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 27 06:44 EST 2022. Contains 358362 sequences. (Running on oeis4.)