%I #17 Feb 15 2020 10:52:26
%S 0,10,2916,933470,300476232,96750651250,31153377608748,
%T 10031290272012230,3230044304029586064,1040064234424568675290,
%U 334897453437128916148980,107835939942462262098571310
%N Values X satisfying the equation 5(X-Y)^4 - XY = 0, where X >= Y.
%C To find Y values: b(n) = c(n)*(-1 + d(n)) which gives: 0, 8, 2880, 932824, 300464640, 96750443240, ...
%H G. C. Greubel, <a href="/A123377/b123377.txt">Table of n, a(n) for n = 0..395</a>
%F a(n) = c(n)*(1+d(n)) with c(0) = 0, c(1) = 1 and c(n) = 18*c(n-1) - c(n-2) d(0) = 1, d(1) = 9 and d(n) = 18*d(n-1) - d(n-2).
%F From _Max Alekseyev_, Nov 13 2009: (Start)
%F For n >= 4, a(n) = 340*a(n-1) - 5798*a(n-2) + 340*a(n-3) - a(n-4).
%F O.g.f.: 2*x*(5*x^2 - 242*x + 5)/( (x^2 -18*x +1)*(x^2 -322*x +1)) (End)
%t CoefficientList[Series[2*x*(5*x^2 - 242*x + 5)/(x^2 - 18*x + 1)/(x^2 - 322*x + 1), {x, 0, 50}], x] (* _G. C. Greubel_, Oct 13 2017 *)
%o (PARI) x='x+O('x^50); concat([0], Vec(2*x*(5*x^2 - 242*x + 5)/( (x^2 -18*x +1)*(x^2 -322*x +1)))) \\ _G. C. Greubel_, Oct 13 2017
%Y Cf. A123381.
%K nonn
%O 0,2
%A _Mohamed Bouhamida_, Oct 13 2006
%E More terms from _Max Alekseyev_, Nov 13 2009