login
A123334
a(n) = 4^n*(Gamma(n+1/4)/Gamma(1/4) + (n-1)!).
1
5, 21, 173, 2121, 34521, 700365, 17017605, 481714065, 15566262705, 565382074005, 22800157775325, 1010786809534425, 48858860891558025, 2557374374022392925, 144098786151306911925, 8696418977823430478625
OFFSET
1,1
COMMENTS
The EXP-transform of a(n) is equal to A121631(n).
LINKS
FORMULA
E.g.f.: (1-4*x)^(-1/4) - 1 - log(1-4*x).
a(n) = A007696(n) + A000302(n)*A000142(n-1). - R. J. Mathar, Jun 18 2009, Jul 07 2009
MATHEMATICA
With[{nmax = 50}, CoefficientList[Series[(1 - 4*x)^(-1/4) - 1 - Log[1 - 4*x], {x, 0, nmax}], x] Range[0, nmax]!] (* G. C. Greubel, Oct 12 2017 *)
PROG
(PARI) x='x+O('x^30); Vec(serlaplace((1-4*x)^(-1/4) - 1 - log(1-4*x))) \\ G. C. Greubel, Oct 12 2017
CROSSREFS
Cf. A121631.
Sequence in context: A182825 A318966 A117067 * A140196 A027160 A195963
KEYWORD
nonn
AUTHOR
Karol A. Penson, Sep 26 2006
STATUS
approved