login
A123317
Smallest prime power m such that n+m is a prime number.
2
1, 1, 2, 1, 2, 1, 4, 3, 2, 1, 2, 1, 4, 3, 2, 1, 2, 1, 4, 3, 2, 1, 8, 5, 4, 3, 2, 1, 2, 1, 16, 5, 4, 3, 2, 1, 4, 3, 2, 1, 2, 1, 4, 3, 2, 1, 32, 5, 4, 3, 2, 1, 8, 5, 4, 3, 2, 1, 2, 1, 256, 5, 4, 3, 2, 1, 4, 3, 2, 1, 2, 1, 16, 5, 4, 3, 2, 1, 4, 3, 2, 1, 128, 5, 4, 3, 2, 1, 8, 7, 16, 5, 4, 3, 2, 1, 4, 3, 2, 1, 2, 1
OFFSET
1,3
FORMULA
A123318(n) = n + a(n);
a(A006093(n)) = 1; a(A040976(n)) = 2 for n>2.
EXAMPLE
n=23: 23+1=3*2^3, 23+2=5^2, 23+3=13*2, 23+2^2=3^3, 23+5=7*2^2, 23+7=5*3*2, but 23+8=31=A000040(11), therefore a(23)=8;
n=24: 24+1=5^2, 24+2=13*2, 24+3=3^3, 24+2^2=7*2^2, but 24+5=29=A000040(10), therefore a(24)=5;
the smallest occurring proper odd prime power is 9=3^2:
n=118: 118+1=17*7, 118+2=5*3*2^3, 118+3=11^2, 118+2^2=61*2, 118+5=41*3, 118+7=5^3, 118+2^3=7*2*3^2, but 118+3^2=127=A000040(31), therefore a(118)=9.
MAPLE
A123317 := proc(n)
local m ;
m :=1 ;
if isprime(n+m) then
return m ;
end if;
for m from 2 do
if nops(numtheory[factorset](m)) = 1 then
if isprime(n+m) then
return m;
end if;
end if;
end do:
end proc:
seq(A123317(n), n=1..102) ; # R. J. Mathar, Aug 09 2019
CROSSREFS
Sequence in context: A372598 A276976 A135545 * A231557 A171453 A285707
KEYWORD
nonn
AUTHOR
Reinhard Zumkeller, Sep 27 2006
STATUS
approved