login
This site is supported by donations to The OEIS Foundation.

 

Logo

Invitation: celebrating 50 years of OEIS, 250000 sequences, and Sloane's 75th, there will be a conference at DIMACS, Rutgers, Oct 9-10 2014.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A123290 Number of distinct C(n,2)-tuples of zeros and ones that are obtained as the collection of all 2 X 2 minor determinants of a 2 X n matrix over GF(2). 1
2, 8, 36, 156, 652, 2668, 10796, 43436, 174252, 698028, 2794156, 11180716, 44731052, 178940588, 715795116, 2863245996, 11453115052, 45812722348, 183251413676, 733006703276, 2932028910252, 11728119835308, 46912487729836 (list; graph; refs; listen; history; text; internal format)
OFFSET

2,1

COMMENTS

Or, the number of commutators in a central extension of order 2^C(n+1,2) covering the elementary Abelian 2-group of order 2^n. Probably also equal to the number of symmetric (n-1)-by-(n-1) matrices with entries in GF(2) of rank less than or equal to 2 and the number of skew-symmetric n-by-n matrices in GF(2) of rank less than or equal to 2.

REFERENCES

Luise-Charlotte Kappe and Robert F. Morse, On Commutators in groups.  Groups St. Andrews 2005. Vol. 2, 531-558, London Math. Soc. Lecture Note Ser., 340, Cambridge Univ. Press, Cambridge, 2007.

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 2..1000

FORMULA

a(n) = (2^(2n-1) - 2^n - 2^(n-1) + 4)/3 = 1 + (2^n - 1)*(2^(n-1) - 1)/3

a(2)=2, a(3)=8, a(4)=36, a(n)=7*a(n-1)-14*a(n-2)+8*a(n-3) [From Harvey P. Dale, Oct 03 2011]

a(2)=2, a(n) = 4*(a(n-1)-1)+2^(n-1). - Vincenzo Librandi, Oct 04 2011

EXAMPLE

a(4) = 36. Let G be a central extension of order 2^C(5,2) covering (Z/2Z)^4; the commutator subgroup of G has order 2^C(4,2) = 64, so it is not the case that every element of the commutator subgroup of G is actually a commutator.

MATHEMATICA

Table[1+(2^n-1) (2^(n-1)-1)/3, {n, 2, 30}] (* or *) LinearRecurrence[ {7, -14, 8}, {2, 8, 36}, 30] (* Harvey P. Dale, Oct 03 2011 *)

PROG

(MAGMA) minors := function(n) F := GF(2); V := VectorSpace(F, 2*n); S := { } ; for v in V do M := Matrix(F, 2, n, ElementToSequence(v)); seq := Minors(M, 2); S := Include(S, seq); end for; return #S; end function;

(MAGMA)  [(2^(2*n-1) - 2^n - 2^(n-1) + 4)/3: n in [2..30]]; // Vincenzo Librandi, Oct 04 2011

CROSSREFS

Sequence in context: A185635 A076122 A236626 * A228791 A088675 A228197

Adjacent sequences:  A123287 A123288 A123289 * A123291 A123292 A123293

KEYWORD

nonn

AUTHOR

David Savitt (savitt(AT)math.arizona.edu), Oct 10 2006, Oct 12 2006

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified July 29 00:19 EDT 2014. Contains 245011 sequences.