

A123269


Sum[ i^j^k, {i,1,n}, {j,1,n}, {k,1,n} ].


2



1, 28, 7625731729896, 13407807929942597099574024998205985135931742965325158317510351105024878248924471298029103219186757034747676158536830429928105045387310278568778808509188348
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


COMMENTS

The next term is too large to include.
Prime p divides a(p) for p = {2, 3, 7, 11, 23, 31, 43, 47, 59, 67, 71, 79, ...} = A039787[n] Primes p such that p1 is squarefree. p^2 divides a(p) for prime p = {2,3}.


LINKS

Table of n, a(n) for n=1..4.


FORMULA

a(n) = Sum[ i^j^k, {i,1,n}, {j,1,n}, {k,1,n} ].


MATHEMATICA

Table[Sum[i^j^k, {i, 1, n}, {j, 1, n}, {k, 1, n}], {n, 1, 5}]


PROG

(PARI) a(n)=sum(i=1, n, sum(j=1, n, sum(k=1, n, i^j^k))) \\ Charles R Greathouse IV, May 15 2013


CROSSREFS

Cf. A039787. Cf. A086787  Sum[ i^j, {i, 1, n}, {j, 1, n} ].
Numbers n that divide a(n) are listed in A124391(n) = {1, 2, 3, 4, 6, 7, 8, 9, 11, 12, 14, 16, 18, 20, 21, 22, 23, 24, 27, 28, 31, ...}.
Sequence in context: A234620 A137942 A099090 * A067158 A243001 A092995
Adjacent sequences: A123266 A123267 A123268 * A123270 A123271 A123272


KEYWORD

nonn


AUTHOR

Alexander Adamchuk, Oct 09 2006


STATUS

approved



