login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Multiplicative encoding of nim sum triangle: Product p(i+1)^BitXOR(n,i).
0

%I #4 Mar 30 2012 18:40:41

%S 2,6,100,9261000,103306896,16274381169926880,

%T 98925457477919384169000000,

%U 8078021071852487276180833326494285813758890000000,20381485968895666256747501044033896769440000

%N Multiplicative encoding of nim sum triangle: Product p(i+1)^BitXOR(n,i).

%C This is to A003987 "Table of n XOR m (or Nim-sum of n and m)" as A007188 "Multiplicative encoding of Pascal triangle: Product p(i+1)^C(n,i)" is to A007318 "Pascal's triangle read by rows." T[2i,2j] = 2T[i,j], T[2i+1,2j] = 2T[i,j] + 1. a(2^n-1) = (n#)^(2^n-1) = A002110(n)^A000225(n).

%F a(n) = Prod[i=i..n] p(i+1)^BitXOR(n,i).

%e a(1) = p(1)^T(1,1) = 2^1 = 2, where T(i,j) is as in A003987.

%e a(2) = p(1)^T(2,1) * p(2)^T(2,2) = 2^1 * 3^1 = 6.

%e a(3) = p(1)^T(3,1) * p(2)^T(3,2) * p(3)^T(3,3) = 2^2 * 3^0 * 5^2 = 100.

%e a(4) = 2^3 * 3^3 * 5^3 * 7^3 = 9261000.

%e a(5) = 2^4 * 3^2 * 5^0 * 7^2 * 11^4 = 103306896.

%e a(6) = 2^5 * 3^5 * 5^1 * 7^1 * 11^5 * 13^5 = 16274381169926880.

%e a(7) = 2^6 * 3^4 * 5^6 * 7^0 * 11^6 * 13^4 * 17^6 = 98925457477919384169000000.

%e a(8) = 2^7 * 3^7 * 5^7 * 7^7 * 11^7 * 13^7 * 17^7 * 19^7.

%e a(9) = 2^8 * 3^6 * 5^4 * 7^6 * 11^0 * 13^6 * 17^4 * 19^6 * 23^8.

%e a(10) = 2^9 * 3^9 * 5^5 * 7^5 * 11^1 * 13^1 * 17^5 * 19^5 * 23^9 * 29^9.

%Y Cf. A000040, A000225, A002110, A003987, A007188, A007318, A009766, A124061.

%K easy,nonn

%O 1,1

%A _Jonathan Vos Post_, Nov 06 2006