login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A123227 Expansion of e.g.f.: 2*exp(2*x) / (3 - exp(2*x)). 5
1, 3, 12, 66, 480, 4368, 47712, 608016, 8855040, 145083648, 2641216512, 52891055616, 1155444326400, 27344999497728, 696933753434112, 19031293222127616, 554336947975618560, 17155693983744196608, 562168282464340672512, 19444889661250162262016 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..200

Eric Weisstein's MathWorld, Polylogarithm.

Eric Weisstein's MathWorld, Lerch Transcendent.

FORMULA

a(n) = abs(A009362(n+1)).

a(n-1) = Sum{k, 1<=k<=n} 2^(n-k)*A028246(n,k), n>=1.

a(n) = Sum{k, 0<=k<=n} 3^k*A123125(n,k).

From Paul D. Hanna, Nov 30 2011: (Start)

a(n) = 3*A122704(n) for n>0.

a(n) = Sum_{k=0..n} (-2)^(n-k) * 3^k * Stirling2(n,k) * k!.

O.g.f.: Sum_{n>=0} 3^n * n!*x^n / Product_{k=0..n} (1+2*k*x).

O.g.f.: 1/(1 - 3*x/(1-x/(1 - 6*x/(1-2*x/(1 - 9*x/(1-3*x/(1 - 12*x/(1-4*x/(1 - 15*x/(1-5*x/(1 - ...)))))))))), a continued fraction.

(End)

a(n) ~ n! * (2/log(3))^(n+1). - Vaclav Kotesovec, Jun 24 2013

a(n) = 2^n*log(3)* int {x = 0..inf} (ceiling(x))^n * 3^(-x) dx. - Peter Bala, Feb 06 2015

a(n) = (-1)^(n+1)*(LerchPhi(sqrt(3), -n, 0) + LerchPhi(-sqrt(3), -n, 0)) = (-1)^(n+1)*(Li_{-n}(sqrt(3)) + Li_{-n}(-sqrt(3))) - 2*0^n, where Li_n(x) is the polylogarithm. - Vladimir Reshetnikov, Oct 31 2015

a(n) = 2^(n+1)*Li_{-n}(1/3). - Peter Luschny, Nov 03 2015

MAPLE

a := n -> 2^(n+1)*polylog(-n, 1/3):

seq(round(evalf(a(n), 32)), n=0..19); # Peter Luschny, Nov 03 2015

seq(expand(2^(n+1)*polylog(-n, 1/3)), n=0..100); # Robert Israel, Nov 03 2015

MATHEMATICA

CoefficientList[Series[2*Exp[2*x]/(3-Exp[2*x]), {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Jun 24 2013 *)

Round@Table[(-1)^(n+1) (LerchPhi[Sqrt[3], -n, 0] + LerchPhi[-Sqrt[3], -n, 0]), {n, 0, 20}] (* Vladimir Reshetnikov, Oct 31 2015 *)

PROG

(PARI) {a(n)=n!*polcoeff(2*exp(2*x+x*O(x^n))/(3 - exp(2*x+x*O(x^n))), n)} /* Paul D. Hanna */

(PARI) {a(n)=polcoeff(sum(m=0, n, 3^m*m!*x^m/prod(k=1, m, 1+2*k*x+x*O(x^n))), n)} /* Paul D. Hanna */

(PARI) {Stirling2(n, k)=if(k<0|k>n, 0, sum(i=0, k, (-1)^i*binomial(k, i)/k!*(k-i)^n))}

{a(n)=sum(k=0, n, (-2)^(n-k)*3^k*Stirling2(n, k)*k!)} /* Paul D. Hanna */

(Sage)

@CachedFunction

def BB(n, k, x):  # Modified Cardinal B-splines

    if n == 1: return 0 if (x < 0) or (x >= k) else 1

    return x*BB(n-1, k, x) + (n*k-x)*BB(n-1, k, x-k)

def EulerianPolynomial(n, k, x):

    if n == 0: return 1

    return add(BB(n+1, k, k*m+1)*x^m for m in (0..n))

def A123227(n) : return 3^n*EulerianPolynomial(n, 1, 1/3)

[A123227(n) for n in (0..18)]  # Peter Luschny, May 04 2013

(PARI)  x='x+O('x^66); Vec(serlaplace(2*exp(2*x)/(3-exp(2*x)))) \\ Joerg Arndt, May 06 2013

CROSSREFS

Cf. A000629, A201339, A122704, A009362, A123125, A028246.

Sequence in context: A080599 A120575 A009362 * A196556 A107713 A256125

Adjacent sequences:  A123224 A123225 A123226 * A123228 A123229 A123230

KEYWORD

nonn,easy

AUTHOR

Philippe Deléham, Oct 06 2006

EXTENSIONS

Name changed and a(8) corrected by Paul D. Hanna, Nov 30 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 2 13:11 EST 2016. Contains 278678 sequences.