login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A123221 Irregular triangle read by rows: the n-th row consists of the coefficients in the expansion of Sum_{j=0..n*(n+1)/2} A008302(n+1,j)*x^j*(1 - x)^(n - min(n, j)), where A008302 is the triangle of Mahonian numbers. 12
1, 1, 1, 0, 1, 1, 1, 0, 2, 3, 5, 3, 1, 1, 0, 3, 5, 11, 22, 20, 15, 9, 4, 1, 1, 0, 4, 7, 18, 41, 90, 101, 101, 90, 71, 49, 29, 14, 5, 1, 1, 0, 5, 9, 26, 64, 154, 359, 455, 531, 573, 573, 531, 455, 359, 259, 169, 98, 49, 20, 6, 1, 1, 0, 6, 11, 35, 91, 234, 583 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,9

LINKS

Table of n, a(n) for n=0..69.

Wikipedia, Major index

FORMULA

T(n,k) = A008302(n+1,k) for n + 1 <= k <= n*(n + 1)/2, n > 1. - Franck Maminirina Ramaharo, Oct 14 2018

EXAMPLE

Triangle begins:

    1;

    1;

    1, 0, 1, 1;

    1, 0, 2, 3,  5,  3,  1;

    1, 0, 3, 5, 11, 22, 20,  15,   9,  4,  1;

    1, 0, 4, 7, 18, 41, 90, 101, 101, 90, 71, 49, 29, 14, 5, 1;

    ...

MATHEMATICA

M[n_] := CoefficientList[Expand@Product[Sum[x^i, {i, 0, j}], {j, n - 1}], x];

Table[CoefficientList[Sum[M[n + 1][[m + 1]]*x^m*(1 - x)^(n - Min[n, m]), {m, 0, Length[M[n + 1]] - 1}], x], {n, 0, 10}]//Flatten

PROG

(Maxima)

A008302(n, k) := ratcoef(ratsimp(product((1 - x^j)/(1 - x), j, 1, n)), x, k)$

P(x, n) := sum(A008302(n + 1, j)*x^j*(1 - x)^(n - min(n, j)), j, 0, n*(n + 1)/2)$

create_list(ratcoef(expand(P(x, n)), x, k), n, 0, 10, k, 0, hipow(P(x, n), x)); /* Franck Maminirina Ramaharo, Oct 14 2018 */

CROSSREFS

Cf. A122753, A123018, A123019, A123021, A123027, A123199, A123202, A123202, A123217.

Sequence in context: A069110 A238684 A202694 * A197032 A321781 A254862

Adjacent sequences:  A123218 A123219 A123220 * A123222 A123223 A123224

KEYWORD

nonn,tabf

AUTHOR

Roger L. Bagula, Oct 05 2006

EXTENSIONS

Edited, new name, and offset corrected by Franck Maminirina Ramaharo, Oct 14 2018

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 31 09:30 EDT 2020. Contains 334748 sequences. (Running on oeis4.)