login
A123219
Expansion of -x*(x^4 + 52*x^3 - 122*x^2 - 28*x + 1) / ((x-1)*(x^2 - 34*x + 1)*(x^2 + 6*x + 1)).
1
1, 1, 81, 2401, 83521, 2825761, 96059601, 3262808641, 110841719041, 3765342321601, 127910874833361, 4345203949621921, 147609026049038401, 5014361666349715681, 170340687719412376401, 5786569020271612560001
OFFSET
1,3
FORMULA
G.f.: -x*(x^4 + 52*x^3 - 122*x^2 - 28*x + 1) / ((x-1)*(x^2 - 34*x + 1)*(x^2 + 6*x + 1)). - Colin Barker, Jan 04 2013
MAPLE
seq(coeff(series(-x*(x^4+52*x^3-122*x^2-28*x+1)/((x-1)*(x^2-34*x+1)*(x^2+6*x+1)), x, n+1), x, n), n = 1 .. 20); # Muniru A Asiru, Oct 13 2018
MATHEMATICA
LinearRecurrence[{29, 174, -174, -29, 1}, {1, 1, 81, 2401, 83521}, 20] (* Harvey P. Dale, Jun 01 2018 *)
PROG
(PARI) x='x+O('x^30); Vec(-x*(x^4+52*x^3-122*x^2-28*x+1)/((x-1)*(x^2-34*x+1)*(x^2+6*x+1))) \\ G. C. Greubel, Oct 12 2018
(Magma) m:=30; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!(-x*(x^4+52*x^3-122*x^2-28*x+1)/((x-1)*(x^2-34*x+1)*(x^2+6*x+1)))); // G. C. Greubel, Oct 12 2018
CROSSREFS
KEYWORD
nonn,easy,less
AUTHOR
EXTENSIONS
New name from Colin Barker, Jan 04 2013
Edited by Joerg Arndt, Oct 13 2018
STATUS
approved