OFFSET
0,3
LINKS
Colin Barker, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (-4,34,30,-108).
FORMULA
G.f.: (1 + 4*x - 28*x^2 - 12*x^3) / (1 + 4*x - 34*x^2 - 30*x^3 + 108*x^4). - Colin Barker, Dec 13 2012
a(n) = -4*a(n-1) + 34*a(n-2) + 30*a(n-3) - 108*a(n-4) for n>3. - Colin Barker, Mar 03 2017
MAPLE
with(linalg): M[1]:=matrix(4, 4, [ -1, 3, -3, 1, 3, -6, 3, 0, -3, 0, 3, 0, 1, 4, 1, 0]): for n from 2 to 22 do M[n]:=multiply(M[n-1], M[1]) od: 1, seq(add(M[k][1, j], j=1..4), k=1..22);
MATHEMATICA
M = {{ -1, 3, -3, 1 }, { 3, -6, 3, 0 }, {-3, 0, 3, 0 }, { 1, 4, 1, 0 }}; v[1] = {1, 1, 1, 1}; v[n_] := v[n] = M.v[n - 1] a1 = Table[v[n][[1]], {n, 1, 25}]
PROG
(PARI) Vec((1 + 4*x - 28*x^2 - 12*x^3) / (1 + 4*x - 34*x^2 - 30*x^3 + 108*x^4) + O(x^30)) \\ Colin Barker, Mar 03 2017
CROSSREFS
KEYWORD
sign,easy
AUTHOR
Roger L. Bagula, Oct 03 2006
EXTENSIONS
Edited by N. J. A. Sloane, Oct 26 2006
STATUS
approved