%I #22 Oct 04 2018 10:44:32
%S 1,0,2,-8,52,-312,1920,-11752,72040,-441448,2705368,-16579176,
%T 101601976,-622645288,3815745720,-23383962344,143303497848,
%U -878204132520,5381881888440,-32981685665896,202121044650488,-1238654600718888,7590823719249208,-46518702391430632
%N a(n) = -5*a(n-1) + 8*a(n-2) + 6*a(n-3) - 4*a(n-4).
%H Colin Barker, <a href="/A123188/b123188.txt">Table of n, a(n) for n = 1..1000</a>
%H Llew Mason, <a href="http://steve.hollasch.net/cgindex/curves/catmull-rom.html">Catmull-Rom Splines</a>, 1994.
%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (-5,8,6,-4).
%F G.f.: x*(1 + 5*x - 6*x^2 - 4*x^3) / (1 + 5*x - 8*x^2 - 6*x^3 + 4*x^4). - _Colin Barker_, Apr 01 2018
%p a[1]:=1: a[2]:=0: a[3]:=2: a[4]:=-8: for n from 5 to 24 do a[n]:=-5*a[n-1]+8*a[n-2]+6*a[n-3]-4*a[n-4] od: seq(a[n],n=1..24);
%t LinearRecurrence[{-5,8,6,-4},{1,0,2,-8},30] (* _Harvey P. Dale_, Jul 08 2017 *)
%t CoefficientList[Series[(1 + 5*x - 6*x^2 - 4*x^3) / (1 + 5*x - 8*x^2 - 6*x^3 + 4*x^4), {x, 0, 25}], x] (* _Stefano Spezia_, Oct 04 2018 *)
%o (PARI) Vec(x*(1 + 5*x - 6*x^2 - 4*x^3) / (1 + 5*x - 8*x^2 - 6*x^3 + 4*x^4) + O(x^30)) \\ _Colin Barker_, Apr 01 2018
%K sign,easy
%O 1,3
%A _Roger L. Bagula_, Oct 03 2006
%E Edited by _N. J. A. Sloane_, Oct 08 2006