

A123172


Least prime p for which Merten's function M(p) = n.


0



13, 5, 3, 2, 97, 229, 223, 557, 569, 587, 1367, 1399, 1409, 2221, 1423, 2657, 3229, 3389, 3253, 3251, 3271, 3323, 3301, 3299, 8353, 8161, 8641, 8423, 8419, 8627, 11839, 8501, 8599, 8537, 8597, 8573, 8521, 8513, 11821, 11813, 19429, 19001, 11783, 11801, 11777
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

3,1


LINKS

Table of n, a(n) for n=3..41.


FORMULA

a(n) = min{p in A000040 and A002321(p) = n}.


EXAMPLE

a(3) = 13 = the first prime for which the Mertens function M(n) = 3.
a(2) = 5 = the first prime for which the Mertens function M(n) = 2.
a(1) = 3 = the first prime for which the Mertens function M(n) = 1.
a(0) = 2 = min{A000040 INTERSECTION A028442} = the first prime for which the Mertens function M(n) = 0.
a(1) = 97 = min{A000040 INTERSECTION A118684} = the first prime for which the Mertens function M(n) = 1.
a(2) = 229 = the first prime for which the Mertens function M(n) = 2.
a(3) = 223 = the first prime for which the Mertens function M(n) = 3.


PROG

(PARI) a(n) = {p = 2; while (mertens(p) != n, p = nextprime(p+1)); p; } \\ Michel Marcus, Sep 24 2013


CROSSREFS

Cf. A000040, A002321, A028442, A118684.
Sequence in context: A222165 A277125 A249267 * A010218 A107833 A248146
Adjacent sequences: A123169 A123170 A123171 * A123173 A123174 A123175


KEYWORD

easy,nonn


AUTHOR

Jonathan Vos Post, Oct 02 2006


EXTENSIONS

More terms from Michel Marcus, Sep 24 2013


STATUS

approved



