login
Largest order of permutations of n elements with no fixed points.
3

%I #32 Dec 27 2017 03:21:41

%S 2,3,4,6,6,12,15,20,30,30,60,42,84,105,140,210,210,420,280,420,420,

%T 840,504,1260,1155,1540,2310,2520,4620,3080,5460,4620,9240,5544,13860,

%U 9240,16380,15015,27720,30030,32760,60060,40040,60060,60060,120120,72072,180180

%N Largest order of permutations of n elements with no fixed points.

%H Gheorghe Coserea, <a href="/A123131/b123131.txt">Table of n, a(n) for n = 2..124</a>

%H Gheorghe Coserea, <a href="/A123131/a123131.txt">Partitions solutions for n = 2..124</a>

%H J.-L. Nicolas, <a href="http://eudml.org/doc/87121">Ordre maximal d’un élément du groupe S_n des permutations et «highly composite numbers»</a>, Bull. Math. Soc. France, 97 (1969), 129-191.

%F From _Gheorghe Coserea_, Dec 24 2017: (Start)

%F A000793(n-2) <= a(n) <= A000793(n), for all n >= 4.

%F If A000793(n-1) < A000793(n) then a(n) = A000793(n).

%F (End)

%e For n=22 we have a(22)=420 since 22 = 4 + 5 + 6 + 7 = 3 + 3 + 4 + 5 + 7 and lcm([4, 5, 6, 7]) = lcm([3, 3, 4, 5, 7]) = 420.

%e For n=26 we have a(26)=1155 since 26 = 3 + 5 + 7 + 11 and lcm([3,5,7,11]) = 1155.

%o (PARI)

%o seq(N) = {

%o my(a = vector(N+1,n,n));

%o for (n=5, #a, forpart(p=n, a[n] = max(a[n],lcm(Vec(p))), [2, n-2]));

%o a[2..#a];

%o };

%o seq(48) \\ _Gheorghe Coserea_, Dec 22 2017

%Y Cf. A000793.

%K nonn

%O 2,1

%A Antoine Verroken and _Vladeta Jovovic_, Sep 30 2006