The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A123081 Infinite square array read by antidiagonals: T(n,k) = Bell(n+k) = A000110(n+k). 1
 1, 1, 1, 2, 2, 2, 5, 5, 5, 5, 15, 15, 15, 15, 15, 52, 52, 52, 52, 52, 52, 203, 203, 203, 203, 203, 203, 203, 877, 877, 877, 877, 877, 877, 877, 877, 4140, 4140, 4140, 4140, 4140, 4140, 4140, 4140, 4140, 21147, 21147, 21147, 21147, 21147, 21147, 21147, 21147, 21147, 21147, 115975, 115975, 115975, 115975 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 COMMENTS Alternatively, triangle read by rows in which row n (n >= 0) contains A000110(n) repeated n+1 times. Row sums = A052887: 1, 2, 6, 20, 75, 312, ... A127568 = Q * M n-th row is composed of n+1 terms of A000110(n). LINKS G. C. Greubel, Antidiagonal rows n = 0..50, flattened W. F. Lunnon et al., Arithmetic properties of Bell numbers to a composite modulus I, Acta Arith., 35 (1979), 1-16. [From N. J. A. Sloane, Feb 07 2009] FORMULA M * Q, as infinite lower triangular matrices; M = the Bell sequence, A000110 in the main diagonal and the rest zeros. Q = (1; 1, 1; 1, 1, 1; ...) EXAMPLE Square array begins: 1, 1, 2, 5, 15, 52, 203, 877, ...; 1, 2, 5, 15, 52, 203, 877, 4140, ...; 2, 5, 15, 52, 203, 877, 4140, 21147, ...; 5, 15, 52, 203, 877, 4140, 21147, 115975, ...; 15, 52, 203, 877, 4140, 21147, 115975, 678570, ...; 52, 203, 877, 4140, 21147, 115975, 678570, 4213597, ...; 203, 877, 4140, 21147, 115975, 678570, 4213597, 27644437, ...; 877, 4140, 21147, 115975, 678570, 4213597, 27644437, 190899322, ...; First few rows of the triangle: 1; 1, 1; 2, 2, 2; 5, 5, 5, 5; 15, 15, 15, 15, 15; 52, 52, 52, 52, 52, 52; 203, 203, 203, 203, 203, 203, 203; MATHEMATICA Table[BellB[n], {n, 0, 12}, {k, 0, n}]//Flatten (* G. C. Greubel, Jul 21 2021 *) PROG (PARI) B(n)=sum(k=0, n, stirling(n, k, 2)); for(n=0, 20, for(k=0, n, print1(B(n), ", "))); \\ Joerg Arndt, Apr 21 2014 (Magma) [Bell(n): k in [0..n], n in [0..12]]; // G. C. Greubel, Jul 21 2021 (Sage) flatten([[bell_number(n) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Jul 21 2021 CROSSREFS Cf. A000110, A052887, A127568. Sequence in context: A105960 A081290 A168256 * A020917 A308772 A332966 Adjacent sequences: A123078 A123079 A123080 * A123082 A123083 A123084 KEYWORD nonn,easy,tabl AUTHOR Gary W. Adamson, Jan 19 2007 EXTENSIONS Edited by N. J. A. Sloane, Feb 07 2009 Added more terms, Joerg Arndt, Apr 21 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 27 10:33 EST 2022. Contains 358368 sequences. (Running on oeis4.)