login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A123072 Bishops on an 8n+1 X 8n+1 board (see Robinson paper for details). 4
1, 2, 72, 7200, 1411200, 457228800, 221298739200, 149597947699200, 134638152929280000, 155641704786247680000, 224746621711341649920000, 396453040698806670458880000, 838894634118674914690990080000, 2097236585296687286727475200000000, 6115541882725140128097317683200000000 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

a(n) = A001700(n-1) * A010050(n). [Reinhard Zumkeller, Feb 16 2010]

LINKS

Table of n, a(n) for n=0..14.

R. W. Robinson, Counting arrangements of bishops, pp. 198-214 of Combinatorial Mathematics IV (Adelaide 1975), Lect. Notes Math., 560 (1976). [The sequence zeta(2k+1).]

FORMULA

a(n) = ceiling((((2*n)! / n!)^2) / 2). - Reinhard Zumkeller, Feb 16 2010

From Benedict W. J. Irwin, Jun 05 2016: (Start)

G.f. for a(n)/(n!)^2 : 1/2 + EllipticK(16*x)/Pi, which is the E.g.f for A187535.

G.f. for a(n)/(n!)^3 : 2F2(1/2, 1/2; 1, 1; 16z)/2.

a(n) = n!*A187535(n) = binomial(2*n-1, n-1)*(2*n)!.

(End)

a(n) = A156992(2n,n). - Alois P. Heinz, Apr 30 2017

MAPLE

For Maple program see A005635.

MATHEMATICA

Table[(((2 n)!/n!)^2)/2, {n, 1, 20}] (* Benedict W. J. Irwin, Jun 05 2016 *)

Table[SeriesCoefficient[Series[1/2 + EllipticK[16 x]/Pi, {x, 0, 20}], n] n! n!, {n, 1, 20}] (* Benedict W. J. Irwin, Jun 05 2016 *)

CROSSREFS

Cf. A173331. [Reinhard Zumkeller, Feb 16 2010]

Cf. A156992.

Sequence in context: A253316 A051443 A246486 * A317346 A099681 A062082

Adjacent sequences:  A123069 A123070 A123071 * A123073 A123074 A123075

KEYWORD

nonn

AUTHOR

N. J. A. Sloane, Sep 28 2006

EXTENSIONS

a(0)=1 prepended by Alois P. Heinz, Apr 30 2017

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 20 12:13 EST 2019. Contains 329335 sequences. (Running on oeis4.)