OFFSET
1,1
COMMENTS
There must be an odd number of odd terms in the sum, either seven odd (as with 7 = 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5), two even and 5 odd terms (as with 311 = 1^5 + 1^5 + 1^5 + 1^5 + 2^5 + 2^5 + 3^5), four even and 3 odd terms (as with 131 = 1^5 + 1^5 + 1^5 + 2^5 + 2^5 + 2^5 + 2^5 and 373 = 1^5 + 1^5 + 2^5 + 2^5 + 2^5 + 2^5 + 3^5) or six even terms and one odd term (as with 193 = 1^5 + 2^5 + 2^5 + 2^5 + 2^5 + 2^5 + 2^5). The sum of two positive 5th powers (A003347), other than 2 = 1^5 + 1^5, cannot be prime.
LINKS
Giovanni Resta, Table of n, a(n) for n = 1..10000
EXAMPLE
a(1) = 7 = 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5.
a(2) = 131 = 1^5 + 1^5 + 1^5 + 2^5 + 2^5 + 2^5 + 2^5.
a(3) = 193 = 1^5 + 2^5 + 2^5 + 2^5 + 2^5 + 2^5 + 2^5.
a(4) = 311 = 1^5 + 1^5 + 1^5 + 1^5 + 2^5 + 2^5 + 3^5.
a(5) = 373 = 1^5 + 1^5 + 2^5 + 2^5 + 2^5 + 2^5 + 3^5.
MATHEMATICA
Take[Union[Select[Total/@Tuples[Range[8]^5, 7], PrimeQ]], 50] (* Harvey P. Dale, May 08 2012 *)
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Jonathan Vos Post, Sep 24 2006
EXTENSIONS
More terms from Harvey P. Dale, May 08 2012
STATUS
approved